Spaces:
Runtime error
Runtime error
aldan.creo
commited on
Commit
·
1e83e3d
1
Parent(s):
a5ef230
ImageNet
Browse files- app.py +116 -13
- imagenet_categories_data.json +0 -0
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -1,27 +1,94 @@
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import os
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
|
|
|
|
| 7 |
logger = logging.getLogger(__name__)
|
| 8 |
-
logger.setLevel(logging.
|
| 9 |
|
| 10 |
load_dotenv()
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def get_user_prompt():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
return {
|
| 15 |
-
"images":
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
"images/1.jpeg",
|
| 19 |
-
],
|
| 20 |
-
"labels": [
|
| 21 |
-
"A roll of string",
|
| 22 |
-
"A camera",
|
| 23 |
-
"A loudspeaker",
|
| 24 |
-
],
|
| 25 |
}
|
| 26 |
|
| 27 |
|
|
@@ -56,16 +123,45 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 56 |
gr.Markdown(
|
| 57 |
"""We want to teach the Maker Faire Bot some creativity. Help us get ideas on what you'd build!"""
|
| 58 |
)
|
|
|
|
| 59 |
with gr.Row(variant="panel") as row:
|
| 60 |
for i in range(len(user_prompt.value["images"])):
|
| 61 |
with gr.Column(variant="default") as col:
|
| 62 |
-
gr.Image(
|
| 63 |
user_prompt.value["images"][i],
|
| 64 |
-
label=user_prompt.value["
|
| 65 |
interactive=False,
|
| 66 |
show_download_button=False,
|
| 67 |
show_share_button=False,
|
| 68 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
user_answer_object = gr.Textbox(
|
| 71 |
autofocus=True,
|
|
@@ -106,6 +202,13 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 106 |
preprocess=False,
|
| 107 |
)
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
gr.Markdown(
|
| 110 |
"""
|
| 111 |
This is an experimental project. Your data is anonymous and will be used to train an AI model. By using this tool, you agree to our [policy](https://makerfaire.com/privacy).
|
|
|
|
| 1 |
+
import json
|
| 2 |
import logging
|
| 3 |
import os
|
| 4 |
+
from functools import partial
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
+
from datasets import Dataset, load_dataset
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
+
logger.setLevel(logging.INFO)
|
| 13 |
|
| 14 |
load_dotenv()
|
| 15 |
|
| 16 |
+
# dataset = load_dataset("detection-datasets/coco")
|
| 17 |
+
it_dataset = load_dataset(
|
| 18 |
+
"imagenet-1k", split="train", streaming=True, trust_remote_code=True
|
| 19 |
+
).shuffle(42)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def gen_from_iterable_dataset(iterable_ds):
|
| 23 |
+
"""
|
| 24 |
+
Convert an iterable dataset to a generator
|
| 25 |
+
"""
|
| 26 |
+
yield from iterable_ds
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# imagenet_categories_data.json is a JSON file containing a hierarchy of ImageNet categories.
|
| 30 |
+
# We want to take all categories under "artifact, artefact".
|
| 31 |
+
# Each node has this structure:
|
| 32 |
+
# {
|
| 33 |
+
# "id": 1,
|
| 34 |
+
# "name": "entity",
|
| 35 |
+
# "children": ...
|
| 36 |
+
# }
|
| 37 |
+
with open("imagenet_categories_data.json") as f:
|
| 38 |
+
data = json.load(f)
|
| 39 |
+
|
| 40 |
+
# Recursively find all categories under "artifact, artefact".
|
| 41 |
+
# We want to get all the "index" values of the leaf nodes. Nodes that are not leaf nodes have a "children" key.
|
| 42 |
+
def find_categories(node):
|
| 43 |
+
if "children" in node:
|
| 44 |
+
for child in node["children"]:
|
| 45 |
+
yield from find_categories(child)
|
| 46 |
+
elif "index" in node:
|
| 47 |
+
yield node["index"]
|
| 48 |
+
|
| 49 |
+
broad_categories = data["children"]
|
| 50 |
+
artifact_category = next(
|
| 51 |
+
filter(lambda x: x["name"] == "artifact, artefact", broad_categories)
|
| 52 |
+
)
|
| 53 |
+
artifact_categories = list(find_categories(artifact_category))
|
| 54 |
+
logger.info(f"Artifact categories: {artifact_categories}")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def filter_imgs_by_label(x):
|
| 58 |
+
"""
|
| 59 |
+
Filter out the images that have label -1
|
| 60 |
+
"""
|
| 61 |
+
print(f'label: {x["label"]}')
|
| 62 |
+
return x["label"] in artifact_categories
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
dataset = it_dataset.take(1000).filter(filter_imgs_by_label)
|
| 66 |
+
dataset = Dataset.from_generator(
|
| 67 |
+
partial(gen_from_iterable_dataset, it_dataset), features=it_dataset.features
|
| 68 |
+
)
|
| 69 |
+
dataset_iterable = iter(dataset)
|
| 70 |
+
|
| 71 |
|
| 72 |
def get_user_prompt():
|
| 73 |
+
# Pick the first 3 images and labels
|
| 74 |
+
images = []
|
| 75 |
+
machine_labels = []
|
| 76 |
+
human_labels = []
|
| 77 |
+
for i in range(3):
|
| 78 |
+
data = next(dataset_iterable)
|
| 79 |
+
logger.info(f"Data: {data}")
|
| 80 |
+
images.append(data["image"])
|
| 81 |
+
# Get the label as a human readable string
|
| 82 |
+
machine_labels.append(data["label"])
|
| 83 |
+
logger.info(dataset)
|
| 84 |
+
human_label = dataset.features["label"].int2str(data["label"]) + str(
|
| 85 |
+
data["label"]
|
| 86 |
+
)
|
| 87 |
+
human_labels.append(human_label)
|
| 88 |
return {
|
| 89 |
+
"images": images,
|
| 90 |
+
"machine_labels": machine_labels,
|
| 91 |
+
"human_labels": human_labels,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
}
|
| 93 |
|
| 94 |
|
|
|
|
| 123 |
gr.Markdown(
|
| 124 |
"""We want to teach the Maker Faire Bot some creativity. Help us get ideas on what you'd build!"""
|
| 125 |
)
|
| 126 |
+
image_components = []
|
| 127 |
with gr.Row(variant="panel") as row:
|
| 128 |
for i in range(len(user_prompt.value["images"])):
|
| 129 |
with gr.Column(variant="default") as col:
|
| 130 |
+
img = gr.Image(
|
| 131 |
user_prompt.value["images"][i],
|
| 132 |
+
label=user_prompt.value["human_labels"][i],
|
| 133 |
interactive=False,
|
| 134 |
show_download_button=False,
|
| 135 |
show_share_button=False,
|
| 136 |
)
|
| 137 |
+
image_components.append(img)
|
| 138 |
+
btn = gr.Button("Change", variant="secondary")
|
| 139 |
+
|
| 140 |
+
def change_image(user_prompt):
|
| 141 |
+
data = next(dataset_iterable)
|
| 142 |
+
logger.info(user_prompt)
|
| 143 |
+
user_prompt = user_prompt.copy()
|
| 144 |
+
user_prompt["images"][i] = data["image"]
|
| 145 |
+
user_prompt["machine_labels"][i] = data["label"]
|
| 146 |
+
user_prompt["human_labels"][i] = dataset.features["label"].int2str(
|
| 147 |
+
data["label"]
|
| 148 |
+
)
|
| 149 |
+
logger.info(user_prompt)
|
| 150 |
+
return (
|
| 151 |
+
user_prompt,
|
| 152 |
+
user_prompt["images"][i],
|
| 153 |
+
gr.update(
|
| 154 |
+
label=user_prompt["human_labels"][i],
|
| 155 |
+
),
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
btn.click(
|
| 159 |
+
change_image,
|
| 160 |
+
inputs=[user_prompt],
|
| 161 |
+
outputs=[user_prompt, img, img],
|
| 162 |
+
preprocess=True,
|
| 163 |
+
postprocess=True,
|
| 164 |
+
)
|
| 165 |
|
| 166 |
user_answer_object = gr.Textbox(
|
| 167 |
autofocus=True,
|
|
|
|
| 202 |
preprocess=False,
|
| 203 |
)
|
| 204 |
|
| 205 |
+
new_prompt_btn = gr.Button("New Prompt", variant="secondary")
|
| 206 |
+
new_prompt_btn.click(
|
| 207 |
+
get_user_prompt,
|
| 208 |
+
outputs=[user_prompt],
|
| 209 |
+
preprocess=False,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
gr.Markdown(
|
| 213 |
"""
|
| 214 |
This is an experimental project. Your data is anonymous and will be used to train an AI model. By using this tool, you agree to our [policy](https://makerfaire.com/privacy).
|
imagenet_categories_data.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets==2.19.0
|
| 2 |
+
gradio==4.28.0
|
| 3 |
+
python-dotenv==1.0.1
|