Spaces:
Runtime error
Runtime error
| #!/usr/bin/python | |
| # -*- encoding: utf-8 -*- | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class OhemCELoss(nn.Module): | |
| def __init__(self, thresh, n_min, ignore_lb=255, *args, **kwargs): | |
| super(OhemCELoss, self).__init__() | |
| self.thresh = -torch.log(torch.tensor(thresh, dtype=torch.float)).cuda() | |
| self.n_min = n_min | |
| self.ignore_lb = ignore_lb | |
| self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') | |
| def forward(self, logits, labels): | |
| N, C, H, W = logits.size() | |
| loss = self.criteria(logits, labels).view(-1) | |
| loss, _ = torch.sort(loss, descending=True) | |
| if loss[self.n_min] > self.thresh: | |
| loss = loss[loss>self.thresh] | |
| else: | |
| loss = loss[:self.n_min] | |
| return torch.mean(loss) | |
| class SoftmaxFocalLoss(nn.Module): | |
| def __init__(self, gamma, ignore_lb=255, *args, **kwargs): | |
| super(SoftmaxFocalLoss, self).__init__() | |
| self.gamma = gamma | |
| self.nll = nn.NLLLoss(ignore_index=ignore_lb) | |
| def forward(self, logits, labels): | |
| scores = F.softmax(logits, dim=1) | |
| factor = torch.pow(1.-scores, self.gamma) | |
| log_score = F.log_softmax(logits, dim=1) | |
| log_score = factor * log_score | |
| loss = self.nll(log_score, labels) | |
| return loss | |
| if __name__ == '__main__': | |
| torch.manual_seed(15) | |
| criteria1 = OhemCELoss(thresh=0.7, n_min=16*20*20//16).cuda() | |
| criteria2 = OhemCELoss(thresh=0.7, n_min=16*20*20//16).cuda() | |
| net1 = nn.Sequential( | |
| nn.Conv2d(3, 19, kernel_size=3, stride=2, padding=1), | |
| ) | |
| net1.cuda() | |
| net1.train() | |
| net2 = nn.Sequential( | |
| nn.Conv2d(3, 19, kernel_size=3, stride=2, padding=1), | |
| ) | |
| net2.cuda() | |
| net2.train() | |
| with torch.no_grad(): | |
| inten = torch.randn(16, 3, 20, 20).cuda() | |
| lbs = torch.randint(0, 19, [16, 20, 20]).cuda() | |
| lbs[1, :, :] = 255 | |
| logits1 = net1(inten) | |
| logits1 = F.interpolate(logits1, inten.size()[2:], mode='bilinear') | |
| logits2 = net2(inten) | |
| logits2 = F.interpolate(logits2, inten.size()[2:], mode='bilinear') | |
| loss1 = criteria1(logits1, lbs) | |
| loss2 = criteria2(logits2, lbs) | |
| loss = loss1 + loss2 | |
| print(loss.detach().cpu()) | |
| loss.backward() | |