|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import julius |
|
|
import pesq |
|
|
import torch |
|
|
from audiocraft.metrics.pesq import PesqMetric |
|
|
from ..common_utils import TempDirMixin, get_batch_white_noise |
|
|
|
|
|
|
|
|
def tensor_pesq(y_pred: torch.Tensor, y: torch.Tensor, sr: int): |
|
|
|
|
|
if sr != 16000: |
|
|
y_pred = julius.resample_frac(y_pred, sr, 16000) |
|
|
y = julius.resample_frac(y, sr, 16000) |
|
|
P, n = 0, 0 |
|
|
for ii in range(y_pred.size(0)): |
|
|
try: |
|
|
P += pesq.pesq(16000, y[ii, 0].cpu().numpy(), y_pred[ii, 0].cpu().numpy()) |
|
|
n += 1 |
|
|
except pesq.NoUtterancesError: |
|
|
pass |
|
|
p = P / n if n != 0 else 0.0 |
|
|
return p |
|
|
|
|
|
|
|
|
class TestPesq(TempDirMixin): |
|
|
|
|
|
def test(self): |
|
|
sample_rate = 16_000 |
|
|
duration = 20 |
|
|
channel = 1 |
|
|
bs = 10 |
|
|
wavs = get_batch_white_noise(bs, channel, int(sample_rate * duration)) |
|
|
|
|
|
pesq_metric = PesqMetric(sample_rate=sample_rate) |
|
|
pesq1 = pesq_metric(wavs, wavs) |
|
|
print(f"Pesq between 2 identical white noises: {pesq1}") |
|
|
assert pesq1 > 1 |
|
|
|
|
|
pesq2 = tensor_pesq(wavs, wavs, 16000) |
|
|
assert torch.allclose(pesq1, torch.tensor(pesq2)) |
|
|
|