Khushi Dahiya
commited on
Commit
·
f568365
1
Parent(s):
af4f55f
updating predict to handle batch processing oof concurrent requests
Browse files- demos/melodyflow_app.py +314 -50
- requirements.txt +1 -0
demos/melodyflow_app.py
CHANGED
|
@@ -16,6 +16,11 @@ import time
|
|
| 16 |
import typing as tp
|
| 17 |
import warnings
|
| 18 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
import torch
|
| 21 |
import gradio as gr
|
|
@@ -26,6 +31,11 @@ from audiocraft.models import MelodyFlow
|
|
| 26 |
|
| 27 |
|
| 28 |
MODEL = None # Last used model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
SPACE_ID = os.environ.get('SPACE_ID', '')
|
| 30 |
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
|
| 31 |
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
|
|
@@ -68,6 +78,220 @@ class FileCleaner:
|
|
| 68 |
file_cleaner = FileCleaner()
|
| 69 |
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def make_waveform(*args, **kwargs):
|
| 72 |
# Further remove some warnings.
|
| 73 |
be = time.time()
|
|
@@ -80,14 +304,16 @@ def make_waveform(*args, **kwargs):
|
|
| 80 |
|
| 81 |
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
|
| 82 |
global MODEL
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
torch.cuda.
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
def _do_predictions(texts,
|
|
@@ -153,24 +379,32 @@ def _do_predictions(texts,
|
|
| 153 |
return out_wavs
|
| 154 |
|
| 155 |
|
| 156 |
-
@spaces.GPU(duration=30)
|
| 157 |
def predict(model, text,
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
if melody is not None:
|
| 166 |
if solver == MIDPOINT:
|
| 167 |
steps = steps//2
|
| 168 |
else:
|
| 169 |
steps = steps//5
|
| 170 |
|
| 171 |
-
global INTERRUPTING
|
| 172 |
INTERRUPTING = False
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
if model_path:
|
| 175 |
model_path = model_path.strip()
|
| 176 |
if not Path(model_path).exists():
|
|
@@ -180,40 +414,51 @@ def predict(model, text,
|
|
| 180 |
"state_dict.bin and compression_state_dict_.bin.")
|
| 181 |
model = model_path
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
if INTERRUPTING:
|
| 192 |
raise gr.Error("Interrupted.")
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
wavs = _do_predictions(
|
| 196 |
-
[text] * N_REPEATS, [melody],
|
| 197 |
-
solver=solver,
|
| 198 |
-
steps=steps,
|
| 199 |
-
target_flowstep=target_flowstep,
|
| 200 |
-
regularize=regularize,
|
| 201 |
-
regularization_strength=regularization_strength,
|
| 202 |
-
duration=duration,
|
| 203 |
-
progress=True,)
|
| 204 |
-
|
| 205 |
-
# Read the audio file and convert to base64
|
| 206 |
-
wav_path = wavs[0]
|
| 207 |
-
with open(wav_path, 'rb') as f:
|
| 208 |
-
audio_bytes = f.read()
|
| 209 |
|
| 210 |
-
|
| 211 |
|
| 212 |
-
#
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
| 217 |
|
| 218 |
|
| 219 |
def toggle_audio_src(choice):
|
|
@@ -353,7 +598,11 @@ def ui_local(launch_kwargs):
|
|
| 353 |
"""
|
| 354 |
)
|
| 355 |
|
| 356 |
-
interface.queue(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
def ui_hf(launch_kwargs):
|
| 359 |
with gr.Blocks() as interface:
|
|
@@ -470,7 +719,19 @@ def ui_hf(launch_kwargs):
|
|
| 470 |
for more details.
|
| 471 |
""")
|
| 472 |
|
| 473 |
-
interface.queue(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
|
| 476 |
if __name__ == "__main__":
|
|
@@ -514,6 +775,9 @@ if __name__ == "__main__":
|
|
| 514 |
if args.share:
|
| 515 |
launch_kwargs['share'] = args.share
|
| 516 |
|
|
|
|
|
|
|
|
|
|
| 517 |
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
|
| 518 |
|
| 519 |
# Show the interface
|
|
|
|
| 16 |
import typing as tp
|
| 17 |
import warnings
|
| 18 |
import base64
|
| 19 |
+
import asyncio
|
| 20 |
+
import threading
|
| 21 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 22 |
+
from queue import Queue, Empty
|
| 23 |
+
import uuid
|
| 24 |
|
| 25 |
import torch
|
| 26 |
import gradio as gr
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
MODEL = None # Last used model
|
| 34 |
+
MODEL_LOCK = threading.Lock() # Thread lock for model access
|
| 35 |
+
REQUEST_QUEUE = Queue() # Queue for batch processing
|
| 36 |
+
BATCH_PROCESSOR = None # Background batch processor
|
| 37 |
+
BATCH_SIZE = 4 # Maximum batch size for concurrent processing
|
| 38 |
+
BATCH_TIMEOUT = 2.0 # Maximum wait time to form a batch (seconds)
|
| 39 |
SPACE_ID = os.environ.get('SPACE_ID', '')
|
| 40 |
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
|
| 41 |
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
|
|
|
|
| 78 |
file_cleaner = FileCleaner()
|
| 79 |
|
| 80 |
|
| 81 |
+
class RequestBatch:
|
| 82 |
+
"""Represents a batch of requests to process together"""
|
| 83 |
+
def __init__(self):
|
| 84 |
+
self.requests = []
|
| 85 |
+
self.futures = []
|
| 86 |
+
self.created_at = time.time()
|
| 87 |
+
|
| 88 |
+
def add_request(self, request_data, future):
|
| 89 |
+
self.requests.append(request_data)
|
| 90 |
+
self.futures.append(future)
|
| 91 |
+
|
| 92 |
+
def is_full(self):
|
| 93 |
+
return len(self.requests) >= BATCH_SIZE
|
| 94 |
+
|
| 95 |
+
def is_expired(self):
|
| 96 |
+
return time.time() - self.created_at > BATCH_TIMEOUT
|
| 97 |
+
|
| 98 |
+
def should_process(self):
|
| 99 |
+
return self.is_full() or self.is_expired() or len(self.requests) > 0
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class BatchProcessor:
|
| 103 |
+
"""Handles batched processing of requests"""
|
| 104 |
+
def __init__(self):
|
| 105 |
+
self.current_batch = RequestBatch()
|
| 106 |
+
self.processing = False
|
| 107 |
+
self.stop_event = threading.Event()
|
| 108 |
+
|
| 109 |
+
def start(self):
|
| 110 |
+
"""Start the background batch processing thread"""
|
| 111 |
+
self.thread = threading.Thread(target=self._process_loop, daemon=True)
|
| 112 |
+
self.thread.start()
|
| 113 |
+
|
| 114 |
+
def stop(self):
|
| 115 |
+
"""Stop the background batch processing"""
|
| 116 |
+
self.stop_event.set()
|
| 117 |
+
|
| 118 |
+
def add_request(self, request_data):
|
| 119 |
+
"""Add a request to the batch and return a future for the result"""
|
| 120 |
+
from concurrent.futures import Future
|
| 121 |
+
future = Future()
|
| 122 |
+
|
| 123 |
+
# Add to current batch
|
| 124 |
+
self.current_batch.add_request(request_data, future)
|
| 125 |
+
|
| 126 |
+
# Signal that we have a new request
|
| 127 |
+
REQUEST_QUEUE.put("new_request")
|
| 128 |
+
|
| 129 |
+
return future
|
| 130 |
+
|
| 131 |
+
def _process_loop(self):
|
| 132 |
+
"""Main processing loop that runs in background thread"""
|
| 133 |
+
while not self.stop_event.is_set():
|
| 134 |
+
try:
|
| 135 |
+
# Wait for a signal or timeout
|
| 136 |
+
REQUEST_QUEUE.get(timeout=0.5)
|
| 137 |
+
|
| 138 |
+
# Check if we should process current batch
|
| 139 |
+
if self.current_batch.should_process() and not self.processing:
|
| 140 |
+
self._process_current_batch()
|
| 141 |
+
|
| 142 |
+
except Empty:
|
| 143 |
+
# Timeout - check if we have an expired batch
|
| 144 |
+
if self.current_batch.should_process() and not self.processing:
|
| 145 |
+
self._process_current_batch()
|
| 146 |
+
continue
|
| 147 |
+
except Exception as e:
|
| 148 |
+
print(f"Error in batch processing loop: {e}")
|
| 149 |
+
|
| 150 |
+
@spaces.GPU(duration=45) # Increased duration for batch processing
|
| 151 |
+
def _process_current_batch(self):
|
| 152 |
+
"""Process the current batch of requests"""
|
| 153 |
+
if len(self.current_batch.requests) == 0:
|
| 154 |
+
return
|
| 155 |
+
|
| 156 |
+
self.processing = True
|
| 157 |
+
batch = self.current_batch
|
| 158 |
+
self.current_batch = RequestBatch() # Start new batch
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Extract batch data
|
| 162 |
+
texts = []
|
| 163 |
+
melodies = []
|
| 164 |
+
params_list = []
|
| 165 |
+
|
| 166 |
+
for request_data in batch.requests:
|
| 167 |
+
texts.append(request_data['text'])
|
| 168 |
+
melodies.append(request_data['melody'])
|
| 169 |
+
params_list.append({
|
| 170 |
+
'solver': request_data['solver'],
|
| 171 |
+
'steps': request_data['steps'],
|
| 172 |
+
'target_flowstep': request_data['target_flowstep'],
|
| 173 |
+
'regularize': request_data['regularize'],
|
| 174 |
+
'regularization_strength': request_data['regularization_strength'],
|
| 175 |
+
'duration': request_data['duration'],
|
| 176 |
+
'model': request_data['model']
|
| 177 |
+
})
|
| 178 |
+
|
| 179 |
+
# Load model if needed (use the first request's model)
|
| 180 |
+
model_version = params_list[0]['model']
|
| 181 |
+
load_model(model_version)
|
| 182 |
+
|
| 183 |
+
# Process batch with unified parameters (use first request's params)
|
| 184 |
+
params = params_list[0]
|
| 185 |
+
results = _do_predictions_batch(
|
| 186 |
+
texts=texts,
|
| 187 |
+
melodies=melodies,
|
| 188 |
+
solver=params['solver'],
|
| 189 |
+
steps=params['steps'],
|
| 190 |
+
target_flowstep=params['target_flowstep'],
|
| 191 |
+
regularize=params['regularize'],
|
| 192 |
+
regularization_strength=params['regularization_strength'],
|
| 193 |
+
duration=params['duration'],
|
| 194 |
+
progress=False
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Set results for each future
|
| 198 |
+
for i, future in enumerate(batch.futures):
|
| 199 |
+
if i < len(results):
|
| 200 |
+
future.set_result(results[i])
|
| 201 |
+
else:
|
| 202 |
+
future.set_exception(Exception("Batch processing failed"))
|
| 203 |
+
|
| 204 |
+
except Exception as e:
|
| 205 |
+
# Set exception for all futures in batch
|
| 206 |
+
for future in batch.futures:
|
| 207 |
+
future.set_exception(e)
|
| 208 |
+
finally:
|
| 209 |
+
self.processing = False
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def _do_predictions_batch(texts, melodies, solver, steps, target_flowstep,
|
| 213 |
+
regularize, regularization_strength, duration, progress=False):
|
| 214 |
+
"""Process a batch of predictions efficiently"""
|
| 215 |
+
with MODEL_LOCK:
|
| 216 |
+
MODEL.set_generation_params(solver=solver, steps=steps, duration=duration)
|
| 217 |
+
MODEL.set_editing_params(
|
| 218 |
+
solver=solver,
|
| 219 |
+
steps=steps,
|
| 220 |
+
target_flowstep=target_flowstep,
|
| 221 |
+
regularize=regularize,
|
| 222 |
+
lambda_kl=regularization_strength
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
print(f"Processing batch: {len(texts)} requests")
|
| 226 |
+
be = time.time()
|
| 227 |
+
|
| 228 |
+
processed_melodies = []
|
| 229 |
+
target_sr = 48000
|
| 230 |
+
target_ac = 2
|
| 231 |
+
|
| 232 |
+
for melody in melodies:
|
| 233 |
+
if melody is None:
|
| 234 |
+
processed_melodies.append(None)
|
| 235 |
+
else:
|
| 236 |
+
melody, sr = audio_read(melody)
|
| 237 |
+
if melody.dim() == 2:
|
| 238 |
+
melody = melody[None]
|
| 239 |
+
if melody.shape[-1] > int(sr * MODEL.duration):
|
| 240 |
+
melody = melody[..., :int(sr * MODEL.duration)]
|
| 241 |
+
melody = convert_audio(melody, sr, target_sr, target_ac)
|
| 242 |
+
melody = MODEL.encode_audio(melody.to(MODEL.device))
|
| 243 |
+
processed_melodies.append(melody)
|
| 244 |
+
|
| 245 |
+
try:
|
| 246 |
+
# Process all requests in the batch together
|
| 247 |
+
if any(m is not None for m in processed_melodies):
|
| 248 |
+
# For editing mode, process each request individually due to melody constraints
|
| 249 |
+
outputs_list = []
|
| 250 |
+
for i, (text, melody) in enumerate(zip(texts, processed_melodies)):
|
| 251 |
+
if melody is not None:
|
| 252 |
+
output = MODEL.edit(
|
| 253 |
+
prompt_tokens=melody.repeat(1, 1, 1),
|
| 254 |
+
descriptions=[text],
|
| 255 |
+
src_descriptions=[""],
|
| 256 |
+
progress=progress,
|
| 257 |
+
return_tokens=False,
|
| 258 |
+
)
|
| 259 |
+
else:
|
| 260 |
+
output = MODEL.generate([text], progress=progress, return_tokens=False)
|
| 261 |
+
outputs_list.append(output[0])
|
| 262 |
+
outputs = torch.stack(outputs_list)
|
| 263 |
+
else:
|
| 264 |
+
# For generation mode, we can batch all requests
|
| 265 |
+
outputs = MODEL.generate(texts, progress=progress, return_tokens=False)
|
| 266 |
+
|
| 267 |
+
except RuntimeError as e:
|
| 268 |
+
raise gr.Error("Error while generating " + e.args[0])
|
| 269 |
+
|
| 270 |
+
outputs = outputs.detach().cpu().float()
|
| 271 |
+
results = []
|
| 272 |
+
|
| 273 |
+
for output in outputs:
|
| 274 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 275 |
+
audio_write(
|
| 276 |
+
file.name, output, MODEL.sample_rate, strategy="loudness",
|
| 277 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
| 278 |
+
|
| 279 |
+
# Read and encode audio
|
| 280 |
+
with open(file.name, 'rb') as f:
|
| 281 |
+
audio_bytes = f.read()
|
| 282 |
+
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
|
| 283 |
+
|
| 284 |
+
results.append({
|
| 285 |
+
"audio": audio_base64,
|
| 286 |
+
"format": "wav"
|
| 287 |
+
})
|
| 288 |
+
|
| 289 |
+
file_cleaner.add(file.name)
|
| 290 |
+
|
| 291 |
+
print(f"Batch finished: {len(texts)} requests in {time.time() - be:.2f}s")
|
| 292 |
+
return results
|
| 293 |
+
|
| 294 |
+
|
| 295 |
def make_waveform(*args, **kwargs):
|
| 296 |
# Further remove some warnings.
|
| 297 |
be = time.time()
|
|
|
|
| 304 |
|
| 305 |
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
|
| 306 |
global MODEL
|
| 307 |
+
with MODEL_LOCK:
|
| 308 |
+
print("Loading model", version)
|
| 309 |
+
if MODEL is None or MODEL.name != version:
|
| 310 |
+
# Clear PyTorch CUDA cache and delete model
|
| 311 |
+
del MODEL
|
| 312 |
+
if torch.cuda.is_available():
|
| 313 |
+
torch.cuda.empty_cache()
|
| 314 |
+
MODEL = None # in case loading would crash
|
| 315 |
+
MODEL = MelodyFlow.get_pretrained(version)
|
| 316 |
+
print(f"Model {version} loaded successfully")
|
| 317 |
|
| 318 |
|
| 319 |
def _do_predictions(texts,
|
|
|
|
| 379 |
return out_wavs
|
| 380 |
|
| 381 |
|
|
|
|
| 382 |
def predict(model, text,
|
| 383 |
+
solver, steps, target_flowstep,
|
| 384 |
+
regularize,
|
| 385 |
+
regularization_strength,
|
| 386 |
+
duration,
|
| 387 |
+
melody=None,
|
| 388 |
+
model_path=None,
|
| 389 |
+
progress=gr.Progress()):
|
| 390 |
+
"""Non-blocking predict function that uses batch processing"""
|
| 391 |
+
|
| 392 |
if melody is not None:
|
| 393 |
if solver == MIDPOINT:
|
| 394 |
steps = steps//2
|
| 395 |
else:
|
| 396 |
steps = steps//5
|
| 397 |
|
| 398 |
+
global INTERRUPTING, BATCH_PROCESSOR
|
| 399 |
INTERRUPTING = False
|
| 400 |
+
|
| 401 |
+
# Initialize batch processor if not already running
|
| 402 |
+
if BATCH_PROCESSOR is None:
|
| 403 |
+
BATCH_PROCESSOR = BatchProcessor()
|
| 404 |
+
BATCH_PROCESSOR.start()
|
| 405 |
+
|
| 406 |
+
progress(0, desc="Queuing request...")
|
| 407 |
+
|
| 408 |
if model_path:
|
| 409 |
model_path = model_path.strip()
|
| 410 |
if not Path(model_path).exists():
|
|
|
|
| 414 |
"state_dict.bin and compression_state_dict_.bin.")
|
| 415 |
model = model_path
|
| 416 |
|
| 417 |
+
# Prepare request data
|
| 418 |
+
request_data = {
|
| 419 |
+
'text': text,
|
| 420 |
+
'melody': melody,
|
| 421 |
+
'solver': solver,
|
| 422 |
+
'steps': steps,
|
| 423 |
+
'target_flowstep': target_flowstep,
|
| 424 |
+
'regularize': regularize,
|
| 425 |
+
'regularization_strength': regularization_strength,
|
| 426 |
+
'duration': duration,
|
| 427 |
+
'model': model,
|
| 428 |
+
'request_id': str(uuid.uuid4())
|
| 429 |
+
}
|
| 430 |
+
|
| 431 |
+
# Add to batch processor
|
| 432 |
+
future = BATCH_PROCESSOR.add_request(request_data)
|
| 433 |
+
|
| 434 |
+
progress(0.3, desc="Waiting for GPU...")
|
| 435 |
+
|
| 436 |
+
# Wait for result with progress updates
|
| 437 |
+
max_wait = 60 # Maximum wait time in seconds
|
| 438 |
+
wait_start = time.time()
|
| 439 |
+
|
| 440 |
+
while not future.done():
|
| 441 |
+
elapsed = time.time() - wait_start
|
| 442 |
+
if elapsed > max_wait:
|
| 443 |
+
raise gr.Error("Request timeout")
|
| 444 |
+
|
| 445 |
+
# Update progress based on wait time
|
| 446 |
+
progress_val = min(0.9, 0.3 + (elapsed / max_wait) * 0.6)
|
| 447 |
+
progress(progress_val, desc="Processing...")
|
| 448 |
+
|
| 449 |
if INTERRUPTING:
|
| 450 |
raise gr.Error("Interrupted.")
|
| 451 |
+
|
| 452 |
+
time.sleep(0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
+
progress(1.0, desc="Complete!")
|
| 455 |
|
| 456 |
+
# Get result
|
| 457 |
+
try:
|
| 458 |
+
result = future.result()
|
| 459 |
+
return result
|
| 460 |
+
except Exception as e:
|
| 461 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 462 |
|
| 463 |
|
| 464 |
def toggle_audio_src(choice):
|
|
|
|
| 598 |
"""
|
| 599 |
)
|
| 600 |
|
| 601 |
+
interface.queue(
|
| 602 |
+
concurrency_count=8, # Allow up to 8 concurrent requests
|
| 603 |
+
max_size=50, # Queue up to 50 requests
|
| 604 |
+
api_open=True # Enable API access
|
| 605 |
+
).launch(**launch_kwargs)
|
| 606 |
|
| 607 |
def ui_hf(launch_kwargs):
|
| 608 |
with gr.Blocks() as interface:
|
|
|
|
| 719 |
for more details.
|
| 720 |
""")
|
| 721 |
|
| 722 |
+
interface.queue(
|
| 723 |
+
concurrency_count=8, # Allow up to 8 concurrent requests
|
| 724 |
+
max_size=50, # Queue up to 50 requests
|
| 725 |
+
api_open=True # Enable API access
|
| 726 |
+
).launch(**launch_kwargs)
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
def cleanup():
|
| 730 |
+
"""Cleanup function for graceful shutdown"""
|
| 731 |
+
global BATCH_PROCESSOR
|
| 732 |
+
if BATCH_PROCESSOR:
|
| 733 |
+
BATCH_PROCESSOR.stop()
|
| 734 |
+
print("Cleanup completed")
|
| 735 |
|
| 736 |
|
| 737 |
if __name__ == "__main__":
|
|
|
|
| 775 |
if args.share:
|
| 776 |
launch_kwargs['share'] = args.share
|
| 777 |
|
| 778 |
+
import atexit
|
| 779 |
+
atexit.register(cleanup)
|
| 780 |
+
|
| 781 |
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
|
| 782 |
|
| 783 |
# Show the interface
|
requirements.txt
CHANGED
|
@@ -26,3 +26,4 @@ torchvision
|
|
| 26 |
torchtext
|
| 27 |
pesq
|
| 28 |
pystoi
|
|
|
|
|
|
| 26 |
torchtext
|
| 27 |
pesq
|
| 28 |
pystoi
|
| 29 |
+
spaces
|