Spaces:
Running
Running
| from doctest import Example | |
| import gradio as gr | |
| from transformers import DPTImageProcessor, DPTForDepthEstimation | |
| import torch | |
| import numpy as np | |
| from PIL import Image, ImageOps | |
| from pathlib import Path | |
| import glob | |
| from autostereogram.converter import StereogramConverter | |
| from datetime import datetime | |
| import time | |
| import tempfile | |
| feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
| model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
| stereo_converter = StereogramConverter() | |
| def process_image(image_path): | |
| print("\n\n\n") | |
| print("Processing image:", image_path) | |
| last_time = time.time() | |
| image_raw = Image.open(Path(image_path)) | |
| image = image_raw | |
| # prepare image for the model | |
| encoding = feature_extractor(image, return_tensors="pt") | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**encoding) | |
| predicted_depth = outputs.predicted_depth | |
| # interpolate to original size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=image.size[::-1], | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| output = prediction.cpu().numpy() | |
| depth_image = (output * 255 / np.max(output)).astype("uint8") | |
| depth_image_padded = np.array( | |
| Image.fromarray(depth_image) | |
| ) | |
| # Return as downloadable file | |
| return depth_image_padded | |
| examples_images = [[f] for f in sorted(glob.glob("examples/*.jpg"))] | |
| with gr.Blocks() as blocks: | |
| gr.Markdown( | |
| """ | |
| ## Depth Image to Autostereogram (Magic Eye) | |
| This demo is a variation from the original [DPT Demo](https://huggingface.co/spaces/nielsr/dpt-depth-estimation). | |
| Zero-shot depth estimation from an image, then it uses [pystereogram](https://github.com/yxiao1996/pystereogram) | |
| to generate the autostereogram (Magic Eye) | |
| <base target="_blank"> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="filepath", label="Input Image") | |
| button = gr.Button("Predict") | |
| with gr.Column(): | |
| predicted_depth = gr.Image(label="Predicted Depth", type="pil") | |
| with gr.Row(): | |
| autostereogram = gr.Image(label="Autostereogram", type="pil") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_download = gr.File(label="Download Image") | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=examples_images, | |
| fn=process_image, | |
| inputs=[input_image], | |
| outputs=predicted_depth, | |
| cache_examples=True, | |
| ) | |
| button.click( | |
| fn=process_image, | |
| inputs=[input_image], | |
| outputs=predicted_depth, | |
| ) | |
| blocks.launch(debug=True) |