File size: 15,266 Bytes
b664155 cc438b6 079a940 b664155 f5a3825 b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 550bb82 b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 6474f1f b664155 3c1e477 b664155 6474f1f b664155 6474f1f b664155 6474f1f 351cd3f 6474f1f 351cd3f 6474f1f 04091cf 6474f1f 04091cf 3c20c7f 04091cf 3c20c7f 04091cf 3c20c7f 6474f1f 04091cf b664155 6474f1f cc438b6 6474f1f cc438b6 079a940 cc438b6 ca345ff cc438b6 ca345ff dd42a41 cc438b6 ca345ff cc438b6 ca345ff 62b888b cc438b6 ca345ff cc438b6 62b888b cc438b6 62b888b ca345ff cc438b6 b664155 6474f1f b664155 6474f1f b664155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
from audio_specialist import audio_specialist_singleton
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from upscaler_specialist import upscaler_specialist_singleton
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR: Câmera Ψ e Destilador Δ) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# MÉTODOS AUXILIARES
def save_latent_tensor(self, tensor: torch.Tensor, path: str):
torch.save(tensor.cpu(), path)
def load_latent_tensor(self, path: str) -> torch.Tensor:
return torch.load(path, map_location=self.device)
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
for frame in video_np: writer.append_data(frame)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
def _get_video_frame_count(self, video_path: str) -> int | None:
if not os.path.exists(video_path): return None
cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-count_frames',
'-show_entries', 'stream=nb_read_frames', '-of', 'default=nokey=1:noprint_wrappers=1', video_path]
try:
result = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8')
return int(result.stdout.strip())
except Exception: return None
def _trim_last_frame_ffmpeg(self, input_path: str, output_path: str) -> bool:
frame_count = self._get_video_frame_count(input_path)
if frame_count is None or frame_count < 2:
if os.path.exists(input_path): os.rename(input_path, output_path)
return True
vf_filter = f"select='lt(n,{frame_count - 1})',setpts=PTS-STARTPTS"
cmd_list = ['ffmpeg', '-y', '-i', input_path, '-vf', vf_filter, '-an', output_path]
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True, encoding='utf-8')
return True
except subprocess.CalledProcessError: return False
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
with open(list_file_path, 'w', encoding='utf-8') as f:
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
return output_path
def _generate_video_and_audio(self, silent_video_path: str, audio_prompt: str, base_name: str) -> str:
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
duration = float(result.stdout.strip())
except Exception:
frame_count = self._get_video_frame_count(silent_video_path)
duration = (frame_count / 24.0) if frame_count else 0
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=duration)
return video_with_audio_path
# NÚCLEO DA LÓGICA ADUC-SDR
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
total_latents_brutos = total_frames_brutos // FRAMES_PER_LATENT_CHUNK
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
if total_latents_brutos <= latents_a_podar + 1:
raise gr.Error(f"A combinação de duração e poda é muito agressiva.")
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
eco_latent_for_next_loop = None
dejavu_latent_for_next_loop = None
num_transitions_to_generate = len(keyframe_paths) - 1
low_res_latent_fragments = []
for i in range(num_transitions_to_generate):
fragment_index = i + 1
progress(i / (num_transitions_to_generate + 2), desc=f"Gerando Latentes do Fragmento {fragment_index}")
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8)
downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8)
target_resolution_tuple = (downscaled_height, downscaled_width)
final_resolution_tuple = (expected_height, expected_width)
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
low_res_latent_fragments.append(latents_video)
progress((num_transitions_to_generate) / (num_transitions_to_generate + 2), desc="Concatenando latentes...")
tensors_para_concatenar = []
target_device = self.device
for idx, tensor_frag in enumerate(low_res_latent_fragments):
tensor_on_target_device = tensor_frag.to(target_device)
if idx < len(low_res_latent_fragments) - 1:
tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :])
else:
tensors_para_concatenar.append(tensor_on_target_device)
final_concatenated_latents = torch.cat(tensors_para_concatenar, dim=2)
progress((num_transitions_to_generate + 1) / (num_transitions_to_generate + 2), desc="Pós-produção (Upscale e Refinamento)...")
base_name = f"final_movie_hq_{int(time.time())}"
# Pós-produção: Upscale + Refine
high_quality_video_path = self._render_and_post_process(
final_concatenated_latents,
base_name=base_name,
expected_height=720,
expected_width=720,
fps=24
)
#progress((num_transitions_to_generate + 1.5) / (num_transitions_to_generate + 2), desc="Gerando paisagem sonora...")
#video_with_audio_path = self._generate_video_and_audio(
# silent_video_path=silent_video_path,
# audio_prompt=global_prompt,
# base_name=base_name
#)
yield {"final_path": high_quality_video_path}
def _render_and_post_process(self, final_concatenated_latents: torch.Tensor,
base_name: str, expected_height: int, expected_width: int, fps: int = 24) -> str:
logger.info("Iniciando pós-processamento: upscale + refinamento...")
# --- 1. Upscale ---
upscaled_latents = upscaler_specialist_singleton.upscale(final_concatenated_latents)
logger.info(f"Upscale concluído: shape {list(upscaled_latents.shape)}")
# --- 2. Refinamento ---
_, _, _, h, w = upscaled_latents.shape
refined_latents, _ = ltx_manager_singleton.refine_latents(
upscaled_latents,
height=h,
width=w,
denoise_strength=0.35, # levemente menor pra preservar nitidez
refine_steps=12 # mais iterações pra polir detalhes
)
logger.info("Refinamento concluído.")
# --- 3. Decodificação ---
pixel_tensor = self.latents_to_pixels(refined_latents)
# --- 4. Render final ---
video_path = os.path.join(self.workspace_dir, f"{base_name}_HQ.mp4")
self.save_video_from_tensor(pixel_tensor, video_path, fps=fps)
logger.info(f"Vídeo final salvo em: {video_path}")
return video_path
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
kwargs = {
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
return self.ltx_manager.generate_latent_fragment(**kwargs)
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized |