File size: 15,266 Bytes
b664155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc438b6
079a940
b664155
 
f5a3825
 
b664155
 
 
 
 
 
 
 
 
 
 
 
 
 
6474f1f
b664155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6474f1f
b664155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6474f1f
b664155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6474f1f
b664155
 
 
 
 
6474f1f
b664155
 
 
 
6474f1f
b664155
 
 
 
 
 
6474f1f
 
 
 
 
 
 
 
 
 
b664155
6474f1f
 
b664155
550bb82
b664155
6474f1f
b664155
6474f1f
 
 
 
 
 
 
 
 
 
 
b664155
6474f1f
b664155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6474f1f
 
b664155
6474f1f
b664155
 
6474f1f
b664155
6474f1f
 
b664155
 
 
 
 
6474f1f
 
b664155
 
6474f1f
b664155
 
 
 
 
 
 
6474f1f
b664155
 
 
3c1e477
 
 
 
 
 
 
 
 
 
b664155
 
 
 
 
 
 
 
 
 
 
6474f1f
b664155
 
6474f1f
b664155
 
 
 
 
6474f1f
351cd3f
6474f1f
351cd3f
6474f1f
04091cf
6474f1f
04091cf
3c20c7f
04091cf
3c20c7f
04091cf
3c20c7f
6474f1f
04091cf
b664155
6474f1f
 
cc438b6
 
 
 
 
 
 
 
 
6474f1f
cc438b6
 
 
 
 
 
 
 
079a940
cc438b6
 
 
 
ca345ff
cc438b6
 
ca345ff
dd42a41
cc438b6
 
ca345ff
 
cc438b6
 
ca345ff
 
62b888b
 
cc438b6
 
 
ca345ff
cc438b6
62b888b
 
cc438b6
 
 
62b888b
 
ca345ff
cc438b6
 
b664155
6474f1f
b664155
 
 
 
6474f1f
b664155
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025  Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing, 
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.

import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc


from audio_specialist import audio_specialist_singleton
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton 
from upscaler_specialist import upscaler_specialist_singleton
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode

logger = logging.getLogger(__name__)

@dataclass
class LatentConditioningItem:
    """Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
    latent_tensor: torch.Tensor
    media_frame_number: int
    conditioning_strength: float

class Deformes4DEngine:
    """
    Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
    Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
    """
    def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
        self.ltx_manager = ltx_manager
        self.workspace_dir = workspace_dir
        self._vae = None
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        logger.info("Especialista Deformes4D (Executor ADUC-SDR: Câmera Ψ e Destilador Δ) inicializado.")

    @property
    def vae(self):
        if self._vae is None:
            self._vae = self.ltx_manager.workers[0].pipeline.vae
        self._vae.to(self.device); self._vae.eval()
        return self._vae

    # MÉTODOS AUXILIARES
    def save_latent_tensor(self, tensor: torch.Tensor, path: str):
        torch.save(tensor.cpu(), path)

    def load_latent_tensor(self, path: str) -> torch.Tensor:
        return torch.load(path, map_location=self.device)

    @torch.no_grad()
    def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
        tensor = tensor.to(self.device, dtype=self.vae.dtype)
        return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)

    @torch.no_grad()
    def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
        latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
        timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
        return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)

    def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
        if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
        video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
        video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
        video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
        with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
            for frame in video_np: writer.append_data(frame)

    def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
        if image.size != target_resolution:
            return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
        return image

    def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
        image_np = np.array(pil_image).astype(np.float32) / 255.0
        tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
        tensor = (tensor * 2.0) - 1.0
        return self.pixels_to_latents(tensor)
    
    def _get_video_frame_count(self, video_path: str) -> int | None:
        if not os.path.exists(video_path): return None
        cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-count_frames',
               '-show_entries', 'stream=nb_read_frames', '-of', 'default=nokey=1:noprint_wrappers=1', video_path]
        try:
            result = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8')
            return int(result.stdout.strip())
        except Exception: return None

    def _trim_last_frame_ffmpeg(self, input_path: str, output_path: str) -> bool:
        frame_count = self._get_video_frame_count(input_path)
        if frame_count is None or frame_count < 2:
            if os.path.exists(input_path): os.rename(input_path, output_path)
            return True
        vf_filter = f"select='lt(n,{frame_count - 1})',setpts=PTS-STARTPTS"
        cmd_list = ['ffmpeg', '-y', '-i', input_path, '-vf', vf_filter, '-an', output_path]
        try:
            subprocess.run(cmd_list, check=True, capture_output=True, text=True, encoding='utf-8')
            return True
        except subprocess.CalledProcessError: return False
            
    def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
        if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
        list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
        with open(list_file_path, 'w', encoding='utf-8') as f:
            for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
        cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
        try:
            subprocess.run(cmd_list, check=True, capture_output=True, text=True)
        except subprocess.CalledProcessError as e:
            raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
        return output_path

 

    def _generate_video_and_audio(self, silent_video_path: str, audio_prompt: str, base_name: str) -> str:
        try:
            result = subprocess.run(
                ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
                capture_output=True, text=True, check=True)
            duration = float(result.stdout.strip())
        except Exception:
            frame_count = self._get_video_frame_count(silent_video_path)
            duration = (frame_count / 24.0) if frame_count else 0

        video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
            video_path=silent_video_path, prompt=audio_prompt,
            duration_seconds=duration)
        
        return video_with_audio_path

    # NÚCLEO DA LÓGICA ADUC-SDR
    def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list, 
                            seconds_per_fragment: float, trim_percent: int,
                            handler_strength: float, destination_convergence_strength: float, 
                            video_resolution: int, use_continuity_director: bool, 
                            progress: gr.Progress = gr.Progress()):
        
        FPS = 24
        FRAMES_PER_LATENT_CHUNK = 8
        ECO_LATENT_CHUNKS = 2
        
        total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
        total_latents_brutos = total_frames_brutos // FRAMES_PER_LATENT_CHUNK
        frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
        latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK

        if total_latents_brutos <= latents_a_podar + 1:
            raise gr.Error(f"A combinação de duração e poda é muito agressiva.")

        DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
        DESTINATION_FRAME_TARGET = total_frames_brutos - 1
        
        base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20}
        keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
        story_history = ""
        
        
        eco_latent_for_next_loop = None
        dejavu_latent_for_next_loop = None
        
        num_transitions_to_generate = len(keyframe_paths) - 1
        low_res_latent_fragments = []

        for i in range(num_transitions_to_generate):
            fragment_index = i + 1
            progress(i / (num_transitions_to_generate + 2), desc=f"Gerando Latentes do Fragmento {fragment_index}")
            
            past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
            start_keyframe_path = keyframe_paths[i]
            destination_keyframe_path = keyframe_paths[i + 1]
            future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
            decision = gemini_singleton.get_cinematic_decision(
                global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
                storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
            transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
            story_history += f"\n- Ato {fragment_index}: {motion_prompt}"


            expected_height, expected_width = 768, 1152
            downscale_factor = 2 / 3
            downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8)
            downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8)
            target_resolution_tuple = (downscaled_height, downscaled_width)
            final_resolution_tuple = (expected_height, expected_width)
        

            
            conditioning_items = []
            if eco_latent_for_next_loop is None:
               img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
               conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
            else:
               conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
               conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
            img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
            conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))

            current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
            latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)

            last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
            eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()   
            dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
            latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
            latents_video = latents_video[:, :, 1:, :, :]

            if transition_type == "cut":
                eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None

            low_res_latent_fragments.append(latents_video)
        
        progress((num_transitions_to_generate) / (num_transitions_to_generate + 2), desc="Concatenando latentes...")
        tensors_para_concatenar = []
        target_device = self.device
        for idx, tensor_frag in enumerate(low_res_latent_fragments):
            tensor_on_target_device = tensor_frag.to(target_device)
            if idx < len(low_res_latent_fragments) - 1:
                tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :]) 
            else:
                tensors_para_concatenar.append(tensor_on_target_device)
        
        final_concatenated_latents = torch.cat(tensors_para_concatenar, dim=2)
        
        progress((num_transitions_to_generate + 1) / (num_transitions_to_generate + 2), desc="Pós-produção (Upscale e Refinamento)...")
        base_name = f"final_movie_hq_{int(time.time())}"


        # Pós-produção: Upscale + Refine
        high_quality_video_path = self._render_and_post_process(
            final_concatenated_latents,
            base_name=base_name,
            expected_height=720,
            expected_width=720,
            fps=24
        )

        
        #progress((num_transitions_to_generate + 1.5) / (num_transitions_to_generate + 2), desc="Gerando paisagem sonora...")
        #video_with_audio_path = self._generate_video_and_audio(
        #    silent_video_path=silent_video_path,
        #    audio_prompt=global_prompt,
        #    base_name=base_name
        #)
        
        yield {"final_path": high_quality_video_path}


    def _render_and_post_process(self, final_concatenated_latents: torch.Tensor, 
                             base_name: str, expected_height: int, expected_width: int, fps: int = 24) -> str:
        logger.info("Iniciando pós-processamento: upscale + refinamento...")

        # --- 1. Upscale ---
        upscaled_latents = upscaler_specialist_singleton.upscale(final_concatenated_latents)
        logger.info(f"Upscale concluído: shape {list(upscaled_latents.shape)}")

        # --- 2. Refinamento ---
        _, _, _, h, w = upscaled_latents.shape
        refined_latents, _ = ltx_manager_singleton.refine_latents(
            upscaled_latents,
            height=h,
            width=w,
            denoise_strength=0.35,   # levemente menor pra preservar nitidez
            refine_steps=12          # mais iterações pra polir detalhes
        )
        logger.info("Refinamento concluído.")

        # --- 3. Decodificação ---
        pixel_tensor = self.latents_to_pixels(refined_latents)

        # --- 4. Render final ---
        video_path = os.path.join(self.workspace_dir, f"{base_name}_HQ.mp4")
        self.save_video_from_tensor(pixel_tensor, video_path, fps=fps)
        logger.info(f"Vídeo final salvo em: {video_path}")

        return video_path

        
    
    def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
        kwargs = {
            **ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
            'video_total_frames': total_frames_to_generate, 'video_fps': 24,
            'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
        }
        return self.ltx_manager.generate_latent_fragment(**kwargs)

    def _quantize_to_multiple(self, n, m):
        if m == 0: return n
        quantized = int(round(n / m) * m)
        return m if n > 0 and quantized == 0 else quantized