File size: 10,905 Bytes
550dd1d 98b590e 550dd1d 98b590e 3526526 98b590e 40b10a0 98b590e 550dd1d 98b590e 550dd1d 98b590e 550dd1d 98b590e 550dd1d 98b590e 550dd1d 98b590e 550dd1d 98b590e 550dd1d 98b590e 550dd1d 98b590e 587a0e1 3526526 4553f61 3526526 4553f61 3526526 4553f61 3526526 4553f61 3526526 587a0e1 98b590e 4553f61 587a0e1 4553f61 587a0e1 3526526 4553f61 02b4ee7 98b590e 587a0e1 98b590e 587a0e1 98b590e 587a0e1 4553f61 3526526 98b590e 3526526 587a0e1 4553f61 40b10a0 02b4ee7 3526526 587a0e1 02b4ee7 587a0e1 98b590e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# ltx_manager_helpers.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
# sob os termos da Licença Pública Geral Affero GNU...
# AVISO DE PATENTE PENDENTE: Consulte NOTICE.md.
import torch
import gc
import os
import yaml
import logging
import huggingface_hub
import time
import threading
import json
from typing import Optional, List
from optimization import optimize_ltx_worker, can_optimize_fp8
from hardware_manager import hardware_manager
from inference import create_ltx_video_pipeline, calculate_padding
from ltx_video.pipelines.pipeline_ltx_video import LatentConditioningItem, LTXMultiScalePipeline
logger = logging.getLogger(__name__)
class LtxWorker:
"""
Representa uma única instância da pipeline LTX-Video em um dispositivo específico.
Gerencia o carregamento do modelo para a CPU e a movimentação de/para a GPU.
"""
def __init__(self, device_id, ltx_config_file):
self.cpu_device = torch.device('cpu')
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
logger.info(f"LTX Worker ({self.device}): Inicializando com config '{ltx_config_file}'...")
with open(ltx_config_file, "r") as file:
self.config = yaml.safe_load(file)
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "")
models_dir = "downloaded_models_gradio"
logger.info(f"LTX Worker ({self.device}): Carregando modelo para a CPU...")
model_path = os.path.join(models_dir, self.config["checkpoint_path"])
if not os.path.exists(model_path):
model_path = huggingface_hub.hf_hub_download(
repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"],
local_dir=models_dir, local_dir_use_symlinks=False
)
self.pipeline = create_ltx_video_pipeline(
ckpt_path=model_path, precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"], device='cpu'
)
logger.info(f"LTX Worker ({self.device}): Modelo pronto na CPU. É um modelo destilado? {self.is_distilled}")
def to_gpu(self):
"""Move o pipeline para a GPU designada E OTIMIZA SE POSSÍVEL."""
if self.device.type == 'cpu': return
logger.info(f"LTX Worker: Movendo pipeline para a GPU {self.device}...")
self.pipeline.to(self.device)
if self.device.type == 'cuda' and can_optimize_fp8():
logger.info(f"LTX Worker ({self.device}): GPU com suporte a FP8 detectada. Iniciando otimização...")
optimize_ltx_worker(self)
logger.info(f"LTX Worker ({self.device}): Otimização concluída.")
elif self.device.type == 'cuda':
logger.info(f"LTX Worker ({self.device}): Otimização FP8 não suportada ou desativada.")
def to_cpu(self):
"""Move o pipeline de volta para a CPU e libera a memória da GPU."""
if self.device.type == 'cpu': return
logger.info(f"LTX Worker: Descarregando pipeline da GPU {self.device}...")
self.pipeline.to('cpu')
gc.collect()
if torch.cuda.is_available(): torch.cuda.empty_cache()
def generate_video_fragment_internal(self, **kwargs):
"""Invoca a pipeline de geração."""
return self.pipeline(**kwargs).images
class LtxPoolManager:
"""
Gerencia um pool de LtxWorkers para otimizar o uso de múltiplas GPUs.
MODO "HOT START": Mantém todos os modelos carregados na VRAM para latência mínima.
"""
def __init__(self, device_ids, ltx_config_file):
logger.info(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}")
self.workers = [LtxWorker(dev_id, ltx_config_file) for dev_id in device_ids]
self.current_worker_index = 0
self.lock = threading.Lock()
if all(w.device.type == 'cuda' for w in self.workers):
logger.info("LTX POOL MANAGER: MODO HOT START ATIVADO. Pré-aquecendo todas as GPUs...")
for worker in self.workers:
worker.to_gpu()
logger.info("LTX POOL MANAGER: Todas as GPUs estão quentes e prontas.")
else:
logger.info("LTX POOL MANAGER: Operando em modo CPU ou misto. O pré-aquecimento de GPU foi ignorado.")
def _get_next_worker(self):
with self.lock:
worker = self.workers[self.current_worker_index]
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
return worker
def _prepare_pipeline_params(self, worker: LtxWorker, **kwargs) -> dict:
"""Prepara o dicionário de parâmetros para a pipeline, tratando casos especiais como modelos destilados."""
pipeline_params = {
"height": kwargs['height'], "width": kwargs['width'], "num_frames": kwargs['video_total_frames'],
"frame_rate": kwargs.get('video_fps', 24),
"generator": torch.Generator(device=worker.device).manual_seed(int(time.time()) + kwargs.get('current_fragment_index', 0)),
"is_video": True, "vae_per_channel_normalize": True,
"prompt": kwargs.get('motion_prompt', ""), "negative_prompt": kwargs.get('negative_prompt', "blurry, distorted, static, bad quality"),
"guidance_scale": kwargs.get('guidance_scale', 1.0), "stg_scale": kwargs.get('stg_scale', 0.0),
"rescaling_scale": kwargs.get('rescaling_scale', 0.15), "num_inference_steps": kwargs.get('num_inference_steps', 20),
"output_type": "latent"
}
if 'latents' in kwargs:
pipeline_params["latents"] = kwargs['latents'].to(worker.device, dtype=worker.pipeline.transformer.dtype)
if 'strength' in kwargs:
pipeline_params["strength"] = kwargs['strength']
if 'conditioning_items_data' in kwargs:
final_conditioning_items = []
for item in kwargs['conditioning_items_data']:
item.latent_tensor = item.latent_tensor.to(worker.device)
final_conditioning_items.append(item)
pipeline_params["conditioning_items"] = final_conditioning_items
if worker.is_distilled:
logger.info(f"Worker {worker.device} está usando um modelo destilado. Usando timesteps fixos.")
fixed_timesteps = worker.config.get("first_pass", {}).get("timesteps")
pipeline_params["timesteps"] = fixed_timesteps
if fixed_timesteps:
pipeline_params["num_inference_steps"] = len(fixed_timesteps)
return pipeline_params
def generate_latent_fragment(self, **kwargs) -> (torch.Tensor, tuple):
worker_to_use = self._get_next_worker()
try:
# [CORREÇÃO] A lógica de padding é específica para a geração do zero.
height, width = kwargs['height'], kwargs['width']
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
padding_vals = calculate_padding(height, width, padded_h, padded_w)
kwargs['height'], kwargs['width'] = padded_h, padded_w
pipeline_params = self._prepare_pipeline_params(worker_to_use, **kwargs)
logger.info(f"Iniciando GERAÇÃO em {worker_to_use.device} com shape {padded_w}x{padded_h}")
if isinstance(worker_to_use.pipeline, LTXMultiScalePipeline):
result = worker_to_use.pipeline.video_pipeline(**pipeline_params).images
else:
result = worker_to_use.generate_video_fragment_internal(**pipeline_params)
return result, padding_vals
except Exception as e:
logger.error(f"LTX POOL MANAGER: Erro durante a geração em {worker_to_use.device}: {e}", exc_info=True)
raise e
finally:
if worker_to_use and worker_to_use.device.type == 'cuda':
with torch.cuda.device(worker_to_use.device):
gc.collect(); torch.cuda.empty_cache()
def refine_latents(self, latents_to_refine: torch.Tensor, **kwargs) -> (torch.Tensor, tuple):
worker_to_use = self._get_next_worker()
try:
# [CORREÇÃO] A lógica de dimensionamento para refinamento deriva da forma do latente.
_b, _c, _f, latent_h, latent_w = latents_to_refine.shape
vae_scale_factor = worker_to_use.pipeline.vae_scale_factor
# Garante que as dimensões correspondam EXATAMENTE ao latente fornecido.
kwargs['height'] = latent_h * vae_scale_factor
kwargs['width'] = latent_w * vae_scale_factor
kwargs['video_total_frames'] = kwargs.get('video_total_frames', _f * worker_to_use.pipeline.video_scale_factor)
kwargs['latents'] = latents_to_refine
kwargs['strength'] = kwargs.get('denoise_strength', 0.4)
kwargs['num_inference_steps'] = int(kwargs.get('refine_steps', 10))
pipeline_params = self._prepare_pipeline_params(worker_to_use, **kwargs)
logger.info(f"Iniciando REFINAMENTO em {worker_to_use.device} com shape {kwargs['width']}x{kwargs['height']}")
pipeline_to_call = worker_to_use.pipeline.video_pipeline if isinstance(worker_to_use.pipeline, LTXMultiScalePipeline) else worker_to_use.pipeline
result = pipeline_to_call(**pipeline_params).images
return result, None
except torch.cuda.OutOfMemoryError as e:
logger.error(f"FALHA DE MEMÓRIA DURANTE O REFINAMENTO em {worker_to_use.device}: {e}")
logger.warning("Limpando VRAM e retornando None para sinalizar a falha.")
gc.collect(); torch.cuda.empty_cache()
return None, None
except Exception as e:
logger.error(f"LTX POOL MANAGER: Erro inesperado durante o refinamento em {worker_to_use.device}: {e}", exc_info=True)
raise e
finally:
if worker_to_use and worker_to_use.device.type == 'cuda':
with torch.cuda.device(worker_to_use.device):
gc.collect(); torch.cuda.empty_cache()
# --- Instanciação Singleton ---
logger.info("Lendo config.yaml para inicializar o LTX Pool Manager...")
with open("config.yaml", 'r') as f:
config = yaml.safe_load(f)
ltx_gpus_required = config['specialists']['ltx']['gpus_required']
ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required)
ltx_config_path = config['specialists']['ltx']['config_file']
ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file=ltx_config_path)
logger.info("Especialista de Vídeo (LTX) pronto.") |