File size: 15,723 Bytes
74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 ffc86f8 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 85ed61a 2f74b3c 636589f 2f74b3c 636589f 5283e9a 2f74b3c 636589f 74b4ab5 ffc86f8 636589f ffc86f8 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 96cf923 74b4ab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import random
import gc
from audio_specialist import audio_specialist_singleton
from ltx_manager_helpers import ltx_manager_singleton
from flux_kontext_helpers import flux_kontext_singleton
from gemini_helpers import gemini_singleton
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (SDR Executor) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
def save_latent_tensor(self, tensor: torch.Tensor, path: str):
torch.save(tensor.cpu(), path)
logger.info(f"Tensor latente salvo em: {path}")
def load_latent_tensor(self, path: str) -> torch.Tensor:
tensor = torch.load(path, map_location=self.device)
logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}")
return tensor
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
for frame in video_np: writer.append_data(frame)
logger.info(f"VÃdeo salvo em: {path}")
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.")
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
pixel_tensor = self.latents_to_pixels(latent_tensor)
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
del pixel_tensor; gc.collect()
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
frag_duration = float(result.stdout.strip())
except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
logger.warning(f"ffprobe falhou em {os.path.basename(silent_video_path)}. Calculando duração manualmente.")
num_pixel_frames = latent_tensor.shape[2] * 8
frag_duration = num_pixel_frames / 24.0
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=frag_duration)
if os.path.exists(silent_video_path):
os.remove(silent_video_path)
return video_with_audio_path
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
final_ltx_params = {
**ltx_params,
'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()),
'conditioning_items_data': conditioning_items
}
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
return new_full_latents
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
if not video_paths:
raise gr.Error("Nenhum fragmento de vÃdeo para montar.")
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
with open(list_file_path, 'w', encoding='utf-8') as f:
for path in video_paths:
f.write(f"file '{os.path.abspath(path)}'\n")
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
logger.info("Executando concatenação FFmpeg...")
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
logger.error(f"Erro no FFmpeg: {e.stderr}")
raise gr.Error(f"Falha na montagem final do vÃdeo. Detalhes: {e.stderr}")
return output_path
def generate_full_movie(self,
keyframes: list,
global_prompt: str,
storyboard: list,
seconds_per_fragment: float,
overlap_percent: int,
echo_frames: int,
handler_strength: float,
destination_convergence_strength: float,
base_ltx_params: dict,
video_resolution: int,
use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
video_clips_paths, story_history, audio_history = [], "", "This is the beginning of the film."
target_resolution_tuple = (video_resolution, video_resolution)
n_trim_latents = self._quantize_to_multiple(int(seconds_per_fragment * 24 * (overlap_percent / 100.0)), 8)
#echo_frames = 8
previous_latents_path = None
num_transitions_to_generate = len(keyframe_paths) - 1
for i in range(num_transitions_to_generate):
progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}")
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i+1]
present_scene_desc = storyboard[i]
is_first_fragment = previous_latents_path is None
is_penultimate_fragment = (i == num_transitions_to_generate - 2)
if is_first_fragment:
transition_type = "start"
motion_prompt = gemini_singleton.get_initial_motion_prompt(
global_prompt, start_keyframe_path, destination_keyframe_path, present_scene_desc
)
else:
past_keyframe_path = keyframe_paths[i-1]
past_scene_desc = storyboard[i-1]
future_scene_desc = storyboard[i+1] if (i+1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt=global_prompt, story_history=story_history,
past_keyframe_path=past_keyframe_path, present_keyframe_path=start_keyframe_path,
future_keyframe_path=destination_keyframe_path, past_scene_desc=past_scene_desc,
present_scene_desc=present_scene_desc, future_scene_desc=future_scene_desc
)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"
if use_continuity_director: # Assume-se que este checkbox controla os diretores de vÃdeo e som
if is_first_fragment:
audio_prompt = gemini_singleton.get_sound_director_prompt(
audio_history=audio_history,
past_keyframe_path=start_keyframe_path, present_keyframe_path=start_keyframe_path,
future_keyframe_path=destination_keyframe_path, present_scene_desc=present_scene_desc,
motion_prompt=motion_prompt, future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
)
else:
audio_prompt = gemini_singleton.get_sound_director_prompt(
audio_history=audio_history, past_keyframe_path=keyframe_paths[i-1],
present_keyframe_path=start_keyframe_path, future_keyframe_path=destination_keyframe_path,
present_scene_desc=present_scene_desc, motion_prompt=motion_prompt,
future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
)
else:
audio_prompt = present_scene_desc # Fallback para o prompt da cena se o diretor de som estiver desligado
audio_history = audio_prompt
conditioning_items = []
current_ltx_params = {**base_ltx_params, "handler_strength": handler_strength, "motion_prompt": motion_prompt}
total_frames_to_generate = self._quantize_to_multiple(int(seconds_per_fragment * 24), 8) + 1
if is_first_fragment:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
start_latent = self.pil_to_latent(img_start)
conditioning_items.append(LatentConditioningItem(start_latent, 0, 1.0))
if transition_type != "cut":
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
destination_latent = self.pil_to_latent(img_dest)
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
else:
previous_latents = self.load_latent_tensor(previous_latents_path)
handler_latent = previous_latents[:, :, -1:, :, :]
trimmed_for_echo = previous_latents[:, :, :-n_trim_latents, :, :] if n_trim_latents > 0 and previous_latents.shape[2] > n_trim_latents else previous_latents
echo_latents = trimmed_for_echo[:, :, -echo_frames:, :, :]
handler_frame_position = n_trim_latents + echo_frames
conditioning_items.append(LatentConditioningItem(echo_latents, 0, 1.0))
conditioning_items.append(LatentConditioningItem(handler_latent, handler_frame_position, handler_strength))
del previous_latents, handler_latent, trimmed_for_echo, echo_latents; gc.collect()
if transition_type == "continuous":
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
destination_latent = self.pil_to_latent(img_dest)
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate)
base_name = f"fragment_{i}_{int(time.time())}"
new_full_latents_path = os.path.join(self.workspace_dir, f"{base_name}_full.pt")
self.save_latent_tensor(new_full_latents, new_full_latents_path)
previous_latents_path = new_full_latents_path
latents_for_video = new_full_latents
if is_first_fragment:
if n_trim_latents > 0 and latents_for_video.shape[2] > n_trim_latents:
latents_for_video = latents_for_video[:, :, :-n_trim_latents, :, :]
elif is_penultimate_fragment:
if echo_frames > 0 and latents_for_video.shape[2] > echo_frames:
latents_for_video = latents_for_video[:, :, :echo_frames, :, :]
if n_trim_latents > 0 and latents_for_video.shape[2] > n_trim_latents:
latents_for_video = latents_for_video[:, :, :-n_trim_latents, :, :]
else:
if echo_frames > 0 and latents_for_video.shape[2] > echo_frames:
latents_for_video = latents_for_video[:, :, :echo_frames, :, :]
video_with_audio_path = self._generate_video_and_audio_from_latents(latents_for_video, audio_prompt, base_name)
video_clips_paths.append(video_with_audio_path)
if transition_type == "cut":
previous_latents_path = None
yield {"fragment_path": video_with_audio_path}
final_movie_path = os.path.join(self.workspace_dir, f"final_movie_{int(time.time())}.mp4")
self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
logger.info(f"Filme completo salvo em: {final_movie_path}")
yield {"final_path": final_movie_path}
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized |