File size: 12,750 Bytes
8ec79b2
b5023f2
 
a09e563
b5023f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09e563
190b4d8
a09e563
8ec79b2
 
 
 
 
 
a09e563
 
 
 
 
 
 
 
ec872a0
a7c0fd0
190b4d8
a09e563
8ec79b2
a09e563
 
 
 
8ec79b2
 
 
a09e563
 
 
8ec79b2
a09e563
 
8ec79b2
 
a09e563
 
 
 
8ec79b2
a09e563
 
 
8ec79b2
a09e563
 
8ec79b2
 
a09e563
8ec79b2
a09e563
 
 
 
8ec79b2
a09e563
 
8ec79b2
 
a09e563
 
8ec79b2
a09e563
 
 
 
 
8ec79b2
 
 
a09e563
 
 
8ec79b2
a09e563
 
8ec79b2
 
a09e563
 
c425ce1
190b4d8
8ec79b2
a09e563
 
 
8ec79b2
 
a09e563
 
8ec79b2
 
 
a09e563
 
8ec79b2
a09e563
 
 
 
 
8ec79b2
a09e563
 
8ec79b2
 
 
a09e563
 
a7c0fd0
a09e563
a7c0fd0
 
8ec79b2
a7c0fd0
8ec79b2
 
a09e563
 
8ec79b2
a09e563
 
8ec79b2
a09e563
 
a7c0fd0
8ec79b2
a09e563
a7c0fd0
8ec79b2
a7c0fd0
8ec79b2
 
a09e563
 
 
8ec79b2
a09e563
 
8ec79b2
 
a09e563
8ec79b2
 
a09e563
8ec79b2
a09e563
 
 
 
 
 
 
 
8ec79b2
a09e563
8ec79b2
a09e563
8ec79b2
 
 
 
 
 
 
 
 
a09e563
8ec79b2
 
a09e563
8ec79b2
a09e563
 
8ec79b2
 
 
a09e563
8ec79b2
a09e563
8ec79b2
a09e563
8ec79b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad5344
8ec79b2
 
 
 
7ad5344
8ec79b2
 
 
 
 
 
 
 
 
7ad5344
a09e563
 
3135a9e
8ec79b2
7ad5344
a09e563
8ec79b2
 
a09e563
8ec79b2
 
 
 
 
 
 
 
 
 
 
 
 
7ad5344
8ec79b2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# aduc_orchestrator.py
# AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR
# Copyright (C) 4 de Agosto de 2025  Carlos Rodrigues dos Santos
#
# Contato:
# Carlos Rodrigues dos Santos
# carlex22@gmail.com
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
#
# Repositórios e Projetos Relacionados:
# GitHub: https://github.com/carlex22/Aduc-sdr
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License...
# PENDING PATENT NOTICE: Please see NOTICE.md.
#
# Version: 2.1.1
#
# This file contains the core ADUC (Automated Discovery and Orchestration of Complex tasks)
# orchestrator, known as the "Maestro" (Γ). Its responsibility is to manage the high-level
# creative workflow of film production. It receives user intent from the UI, delegates
# specific tasks (like storyboarding, keyframe generation, video rendering, and post-production)
# to the appropriate AI "Specialists," and manages the state of the production via the
# "Director" component. It does not perform AI inference itself but acts as the central conductor.

import os
import logging
from typing import List, Dict, Any, Generator, Tuple

import gradio as gr
from PIL import Image, ImageOps

from engineers.deformes4D import Deformes4DEngine
from engineers.deformes2D_thinker import deformes2d_thinker_singleton
from engineers.deformes3D import deformes3d_engine_singleton

# The logger is configured in app.py; here we just get the instance.
logger = logging.getLogger(__name__)

class AducDirector:
    """
    Represents the Scene Director, responsible for managing the production state.
    Acts as the "score" for the orchestra, keeping track of all generated artifacts
    (script, keyframes, etc.) during the creative process.
    """
    def __init__(self, workspace_dir: str):
        """
        Initializes the Director, creating the workspace directory.

        Args:
            workspace_dir (str): The path to the directory where all generation
                                 artifacts will be stored.
        """
        self.workspace_dir = workspace_dir
        os.makedirs(self.workspace_dir, exist_ok=True)
        self.state: Dict[str, Any] = {}
        logger.info(f"The stage is set. Workspace at '{self.workspace_dir}'.")

    def update_state(self, key: str, value: Any) -> None:
        """
        Notes new information on the "score," updating the production state.

        Args:
            key (str): The key for the state to be saved (e.g., "storyboard").
            value (Any): The value of the state (e.g., the list of storyboard scenes).
        """
        logger.info(f"Notating on the score: State '{key}' updated.")
        self.state[key] = value

    def get_state(self, key: str, default: Any = None) -> Any:
        """
        Consults information from the "score," retrieving a saved state.

        Args:
            key (str): The key of the state to be retrieved.
            default (Any, optional): The value to return if the key does not exist.

        Returns:
            Any: The value of the saved state or the default value.
        """
        return self.state.get(key, default)

class AducOrchestrator:
    """
    Implements the Maestro (Γ), the central orchestration layer of the ADUC architecture.
    It does not execute AI tasks directly but delegates each step of the creative
    process (scriptwriting, art direction, cinematography) to the appropriate Specialists.
    """
    def __init__(self, workspace_dir: str):
        """
        Initializes the Maestro and its musicians (the AI specialists).

        Args:
            workspace_dir (str): The path to the workspace, which will be managed
                                 by the AducDirector.
        """
        self.director = AducDirector(workspace_dir)
        self.editor = Deformes4DEngine(workspace_dir)
        self.painter = deformes3d_engine_singleton
        logger.info("ADUC Maestro is on the podium. Musicians (specialists) are ready.")

    def process_image_for_story(self, image_path: str, size: int, filename: str) -> str:
        """
        Pre-processes a reference image, standardizing it for use by the Specialists.
        Converts to RGB, resizes to a square format, and saves to the workspace.

        Args:
            image_path (str): Path of the original image.
            size (int): Width and height of the final image.
            filename (str): Filename for the processed image.

        Returns:
            str: The path to the processed and saved image.
        """
        img = Image.open(image_path).convert("RGB")
        img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
        processed_path = os.path.join(self.director.workspace_dir, filename)
        img_square.save(processed_path)
        logger.info(f"Reference image processed and saved to: {processed_path}")
        return processed_path

    # --- PRE-PRODUCTION TASKS ---

    def task_generate_storyboard(self, prompt: str, num_keyframes: int, ref_image_paths: List[str],
                                 progress: gr.Progress) -> Tuple[List[str], str, Any]:
        """
        Delegates the task of creating the storyboard to the Scriptwriter (deformes2D_thinker).
        """
        logger.info(f"Act 1, Scene 1: Script. Instructing Scriptwriter (deformes2D_thinker) to create {num_keyframes} scenes from: '{prompt}'")
        progress(0.2, desc="Consulting AI Scriptwriter (deformes2D_thinker)...")

        storyboard = deformes2d_thinker_singleton.generate_storyboard(prompt, num_keyframes, ref_image_paths)

        logger.info(f"Scriptwriter returned the score: {storyboard}")
        self.director.update_state("storyboard", storyboard)
        self.director.update_state("processed_ref_paths", ref_image_paths)

        return storyboard, ref_image_paths[0], gr.update(visible=True, open=True)

    def task_select_keyframes(self, storyboard: List[str], base_ref_paths: List[str],
                              pool_ref_paths: List[str]) -> List[str]:
        """
        Delegates to the Editor/Photographer (deformes2D_thinker) the task of selecting the best images
        from a "scene bank" to match the script (Photographer Mode).
        """
        logger.info(f"Act 1, Scene 2 (Photographer Mode): Instructing Editor (deformes2D_thinker) to select {len(storyboard)} keyframes.")

        selected_paths = deformes2d_thinker_singleton.select_keyframes_from_pool(storyboard, base_ref_paths, pool_ref_paths)

        logger.info(f"Editor selected the following scenes: {[os.path.basename(p) for p in selected_paths]}")
        self.director.update_state("keyframes", selected_paths)
        return selected_paths

    def task_generate_keyframes(self, storyboard: List[str], initial_ref_path: str, global_prompt: str,
                                keyframe_resolution: int, progress_callback_factory=None) -> List[str]:
        """
        Delegates to the Art Director (ImageSpecialist) the task of generating the visual
        keyframes from the script (Art Director Mode).
        """
        logger.info("Act 1, Scene 2 (Art Director Mode): Delegating to Image Specialist.")

        general_ref_paths = self.director.get_state("processed_ref_paths", [])

        final_keyframes = self.painter.generate_keyframes_from_storyboard(
            storyboard=storyboard,
            initial_ref_path=initial_ref_path,
            global_prompt=global_prompt,
            keyframe_resolution=keyframe_resolution,
            general_ref_paths=general_ref_paths,
            progress_callback_factory=progress_callback_factory
        )

        self.director.update_state("keyframes", final_keyframes)
        logger.info("Maestro: Image Specialist has completed keyframe generation.")
        return final_keyframes

    # --- PRODUCTION & POST-PRODUCTION TASKS ---

    def task_produce_original_movie(self, keyframes: List[str], global_prompt: str, seconds_per_fragment: float,
                                    trim_percent: int, handler_strength: float,
                                    destination_convergence_strength: float,
                                    guidance_scale: float, stg_scale: float, inference_steps: int,
                                    video_resolution: int, use_continuity_director: bool,
                                    progress: gr.Progress) -> Dict[str, Any]:
        """
        Delegates the production of the original master video to the Deformes4DEngine.
        This is the core video generation step.
        """
        logger.info("Maestro: Delegating production of the original movie to Deformes4DEngine.")
        storyboard = self.director.get_state("storyboard", [])

        result = self.editor.generate_original_movie(
            keyframes=keyframes,
            global_prompt=global_prompt,
            storyboard=storyboard,
            seconds_per_fragment=seconds_per_fragment,
            trim_percent=trim_percent,
            handler_strength=handler_strength,
            destination_convergence_strength=destination_convergence_strength,
            video_resolution=video_resolution,
            use_continuity_director=use_continuity_director,
            guidance_scale=guidance_scale,
            stg_scale=stg_scale,
            num_inference_steps=inference_steps,
            progress=progress
        )
        
        self.director.update_state("final_video_path", result["final_path"])
        self.director.update_state("latent_paths", result["latent_paths"])
        logger.info("Maestro: Original movie production complete.")
        return result

    def task_run_latent_upscaler(self, latent_paths: List[str], chunk_size: int, progress: gr.Progress) -> Generator[Dict[str, Any], None, None]:
        """
        Orchestrates the latent upscaling task.
        """
        logger.info(f"Maestro: Delegating latent upscaling task for {len(latent_paths)} fragments.")
        
        for update in self.editor.upscale_latents_and_create_video(
            latent_paths=latent_paths,
            chunk_size=chunk_size,
            progress=progress
        ):
            if "final_path" in update and update["final_path"]:
                self.director.update_state("final_video_path", update["final_path"])
                yield update
                break
        
        logger.info("Maestro: Latent upscaling complete.")
    
    def task_run_hd_mastering(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress: gr.Progress) -> Generator[Dict[str, Any], None, None]:
        """
        Orchestrates the HD mastering task.
        """
        logger.info(f"Maestro: Delegating HD mastering task using SeedVR {model_version}.")
        
        for update in self.editor.master_video_hd(
            source_video_path=source_video_path,
            model_version=model_version,
            steps=steps,
            prompt=prompt,
            progress=progress
        ):
            if "final_path" in update and update["final_path"]:
                self.director.update_state("final_video_path", update["final_path"])
                yield update
                break
        
        logger.info("Maestro: HD mastering complete.")

    def task_run_audio_generation(self, source_video_path: str, audio_prompt: str, progress: gr.Progress) -> Generator[Dict[str, Any], None, None]:
        """
        Orchestrates the audio generation task.
        """
        logger.info(f"Maestro: Delegating audio generation task.")
        
        for update in self.editor.generate_audio_for_final_video(
            source_video_path=source_video_path,
            audio_prompt=audio_prompt,
            progress=progress
        ):
             if "final_path" in update and update["final_path"]:
                self.director.update_state("final_video_path", update["final_path"])
                yield update
                break
        
        logger.info("Maestro: Audio generation complete.")