File size: 10,402 Bytes
9eaf163
3470339
805d716
3470339
805d716
 
 
 
 
 
3470339
 
 
 
 
 
 
 
 
 
 
 
 
805d716
 
 
 
3470339
 
805d716
3470339
 
 
 
 
805d716
3470339
 
 
 
 
 
805d716
3470339
805d716
 
 
 
 
 
 
 
3470339
 
 
 
805d716
 
3470339
 
805d716
3470339
 
805d716
3470339
805d716
3470339
 
805d716
3470339
805d716
 
 
3470339
 
805d716
3470339
 
805d716
3470339
 
 
 
 
 
805d716
 
 
3470339
 
 
805d716
 
3470339
 
805d716
3470339
 
805d716
3470339
 
805d716
3470339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805d716
3470339
805d716
3470339
 
 
 
 
805d716
3470339
 
 
 
 
805d716
3470339
 
805d716
3470339
 
 
 
 
 
 
 
 
 
 
805d716
3470339
 
 
 
 
 
 
 
 
 
 
 
 
 
805d716
3470339
805d716
3470339
805d716
3470339
 
805d716
3470339
 
 
 
 
805d716
3470339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805d716
3470339
805d716
3470339
 
 
805d716
3470339
 
805d716
3470339
 
 
 
 
805d716
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# managers/gemini_manager.py
#
# Copyright (C) August 4, 2025  Carlos Rodrigues dos Santos
#
# Version: 1.1.0
#
# This file defines the GeminiManager, a specialist responsible for all Natural
# Language Processing, reasoning, and vision-language tasks. It acts as the
# Scriptwriter, Editor, and Cinematic Director for the ADUC framework, generating
# storyboards, prompts, and making creative decisions.

import os
import logging
import json
import gradio as gr
from PIL import Image
import google.generativeai as genai
import re

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def robust_json_parser(raw_text: str) -> dict:
    """
    Parses a JSON object from a string that might contain extra text,
    such as Markdown code blocks from an LLM's response.
    """
    clean_text = raw_text.strip()
    try:
        # Try to find JSON delimited by ```json ... ```
        match = re.search(r'```json\s*(\{.*?\})\s*```', clean_text, re.DOTALL)
        if match:
            json_str = match.group(1)
            return json.loads(json_str)
        
        # If not found, try to find the first '{' and the last '}'
        start_index = clean_text.find('{')
        end_index = clean_text.rfind('}')
        if start_index != -1 and end_index != -1 and end_index > start_index:
            json_str = clean_text[start_index : end_index + 1]
            return json.loads(json_str)
        else:
            raise ValueError("No valid JSON object could be found in the AI's response.")
    except json.JSONDecodeError as e:
        logger.error(f"Failed to decode JSON. The AI returned the following text:\n---\n{raw_text}\n---")
        raise ValueError(f"The AI returned an invalid JSON format: {e}")

class GeminiManager:
    """
    Manages interactions with the Google Gemini API, acting as the primary
    reasoning and language specialist for the ADUC framework.
    """
    def __init__(self):
        self.api_key = os.environ.get("GEMINI_API_KEY")
        if self.api_key:
            genai.configure(api_key=self.api_key)
            self.model = genai.GenerativeModel('gemini-1.5-pro-latest') 
            logger.info("Gemini Specialist (1.5 Pro) initialized successfully.")
        else:
            self.model = None
            logger.warning("Gemini API key not found. Specialist disabled.")
            
    def _check_model(self):
        """Raises an error if the Gemini API is not configured."""
        if not self.model:
            raise gr.Error("The Google Gemini API key is not configured (GEMINI_API_KEY).")

    def _read_prompt_template(self, filename: str) -> str:
        """Reads a prompt template file from the 'prompts' directory."""
        try:
            # Assuming the 'prompts' directory is in the root of the project
            prompts_dir = Path(__file__).resolve().parent.parent / "prompts"
            with open(prompts_dir / filename, "r", encoding="utf-8") as f:
                return f.read()
        except FileNotFoundError:
            raise gr.Error(f"Prompt template file not found: prompts/{filename}")

    def generate_storyboard(self, prompt: str, num_keyframes: int, ref_image_paths: list[str]) -> list[str]:
        """Delegated task: Acts as a Scriptwriter to generate a storyboard."""
        self._check_model()
        try:
            template = self._read_prompt_template("unified_storyboard_prompt.txt")
            storyboard_prompt = template.format(user_prompt=prompt, num_fragments=num_keyframes)
            model_contents = [storyboard_prompt] + [Image.open(p) for p in ref_image_paths]
            
            logger.info("Calling Gemini to generate storyboard...")
            response = self.model.generate_content(model_contents)
            logger.info(f"Gemini responded with (raw storyboard): {response.text}")
            
            storyboard_data = robust_json_parser(response.text)
            storyboard = storyboard_data.get("scene_storyboard", [])
            if not storyboard or len(storyboard) != num_keyframes: 
                raise ValueError(f"Incorrect number of scenes generated. Expected {num_keyframes}, got {len(storyboard)}.")
            return storyboard
        except Exception as e:
            raise gr.Error(f"The Scriptwriter (Gemini) failed: {e}")

    def select_keyframes_from_pool(self, storyboard: list, base_image_paths: list[str], pool_image_paths: list[str]) -> list[str]:
        """Delegated task: Acts as a Photographer/Editor to select keyframes."""
        self._check_model()
        if not pool_image_paths:
            raise gr.Error("The 'image pool' (Additional Images) is empty.")
            
        try:
            template = self._read_prompt_template("keyframe_selection_prompt.txt")
            
            image_map = {f"IMG-{i+1}": path for i, path in enumerate(pool_image_paths)}
            base_image_map = {f"BASE-{i+1}": path for i, path in enumerate(base_image_paths)}
            
            model_contents = ["# Reference Images (Story Base)"]
            for identifier, path in base_image_map.items():
                model_contents.extend([f"Identifier: {identifier}", Image.open(path)])
            
            model_contents.append("\n# Image Pool (Scene Bank)")
            for identifier, path in image_map.items():
                model_contents.extend([f"Identifier: {identifier}", Image.open(path)])

            storyboard_str = "\n".join([f"- Scene {i+1}: {s}" for i, s in enumerate(storyboard)])
            selection_prompt = template.format(storyboard_str=storyboard_str, image_identifiers=list(image_map.keys()))
            model_contents.append(selection_prompt)
            
            logger.info("Calling Gemini to select keyframes from pool...")
            response = self.model.generate_content(model_contents)
            logger.info(f"Gemini responded with (raw keyframe selection): {response.text}")
            
            selection_data = robust_json_parser(response.text)
            selected_identifiers = selection_data.get("selected_image_identifiers", [])
            
            if len(selected_identifiers) != len(storyboard):
                raise ValueError("The AI did not select the correct number of images for the scenes.")
            
            selected_paths = [image_map[identifier] for identifier in selected_identifiers]
            return selected_paths

        except Exception as e:
            raise gr.Error(f"The Photographer (Gemini) failed to select images: {e}")

    def get_anticipatory_keyframe_prompt(self, global_prompt: str, scene_history: str, current_scene_desc: str, future_scene_desc: str, last_image_path: str, fixed_ref_paths: list[str]) -> str:
        """Delegated task: Acts as an Art Director to generate an image prompt."""
        self._check_model()
        try:
            template = self._read_prompt_template("anticipatory_keyframe_prompt.txt")
            
            director_prompt = template.format(
                historico_prompt=scene_history,
                cena_atual=current_scene_desc,
                cena_futura=future_scene_desc
            )
            
            model_contents = [
                "# CONTEXT:",
                f"- Global Story Goal: {global_prompt}",
                "# VISUAL ASSETS:",
                "Current Base Image [IMG-BASE]:", 
                Image.open(last_image_path)
            ]
            
            ref_counter = 1
            for path in fixed_ref_paths:
                if path != last_image_path:
                    model_contents.extend([f"General Reference Image [IMG-REF-{ref_counter}]:", Image.open(path)])
                    ref_counter += 1

            model_contents.append(director_prompt)

            logger.info("Calling Gemini to generate anticipatory keyframe prompt...")
            response = self.model.generate_content(model_contents)
            logger.info(f"Gemini responded with (raw keyframe prompt): {response.text}")

            final_flux_prompt = response.text.strip().replace("`", "").replace("\"", "")
            return final_flux_prompt
        except Exception as e:
            raise gr.Error(f"The Art Director (Gemini) failed: {e}")

    def get_cinematic_decision(self, global_prompt: str, story_history: str, 
                               past_keyframe_path: str, present_keyframe_path: str, future_keyframe_path: str,
                               past_scene_desc: str, present_scene_desc: str, future_scene_desc: str) -> dict:
        """
        Delegated task: Acts as a Film Director to make editing decisions and generate motion prompts.
        """
        self._check_model()
        try:
            template = self._read_prompt_template("cinematic_director_prompt.txt")
            prompt_text = template.format(
                global_prompt=global_prompt, 
                story_history=story_history,
                past_scene_desc=past_scene_desc,
                present_scene_desc=present_scene_desc,
                future_scene_desc=future_scene_desc
            )
            
            model_contents = [
                prompt_text,
                "[PAST_IMAGE]:", Image.open(past_keyframe_path),
                "[PRESENT_IMAGE]:", Image.open(present_keyframe_path),
                "[FUTURE_IMAGE]:", Image.open(future_keyframe_path)
            ]
            
            logger.info("Calling Gemini to generate cinematic decision...")
            response = self.model.generate_content(model_contents)
            logger.info(f"Gemini responded with (raw cinematic decision): {response.text}")
            
            decision_data = robust_json_parser(response.text)
            if "transition_type" not in decision_data or "motion_prompt" not in decision_data:
                raise ValueError("AI response (Cinematographer) is malformed. Missing 'transition_type' or 'motion_prompt'.")
            return decision_data
        except Exception as e:
            logger.error(f"The Film Director (Gemini) failed: {e}. Using fallback to 'continuous'.")
            return {
                "transition_type": "continuous",
                "motion_prompt": f"A smooth, continuous cinematic transition from '{present_scene_desc}' to '{future_scene_desc}'."
            }

# --- Singleton Instance ---
gemini_manager_singleton = GeminiManager()