File size: 19,141 Bytes
e03c986
 
35d9fd0
e03c986
7d435b2
35d9fd0
 
 
 
 
 
 
b664155
 
 
 
 
 
 
 
 
 
 
 
1b8ed0f
35d9fd0
7d435b2
b664155
 
35d9fd0
48d9f58
887690a
b664155
768a8fe
7d435b2
b664155
 
 
 
 
35d9fd0
b664155
 
 
 
 
e03c986
35d9fd0
 
e03c986
b664155
 
 
 
 
35d9fd0
1b8ed0f
 
b664155
 
 
 
ac22439
b664155
 
 
 
35d9fd0
 
431a182
 
ac22439
431a182
 
b664155
 
 
ac22439
b664155
 
 
 
b7e85da
ac22439
b7e85da
 
 
 
 
 
 
b664155
ac22439
b664155
 
 
 
 
ac22439
b664155
 
 
 
35d9fd0
 
 
 
 
 
 
 
 
 
 
 
b664155
 
35d9fd0
 
1b8ed0f
 
 
 
 
 
b664155
 
 
 
b7e85da
b664155
35d9fd0
 
768a8fe
b7e85da
35d9fd0
48d9f58
35d9fd0
 
 
768a8fe
35d9fd0
 
b664155
 
35d9fd0
b664155
 
 
35d9fd0
 
 
b664155
35d9fd0
b664155
 
 
 
 
 
 
 
 
 
35d9fd0
 
 
 
b664155
35d9fd0
b664155
 
 
35d9fd0
b664155
48d9f58
1b8ed0f
 
 
 
35d9fd0
 
1b8ed0f
35d9fd0
1b8ed0f
35d9fd0
1b8ed0f
 
 
 
35d9fd0
1b8ed0f
35d9fd0
1b8ed0f
35d9fd0
 
1b8ed0f
35d9fd0
 
 
 
1b8ed0f
21b2ae3
35d9fd0
 
7d435b2
35d9fd0
1b8ed0f
 
35d9fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d435b2
35d9fd0
 
 
1b8ed0f
35d9fd0
 
1b8ed0f
d2de905
35d9fd0
 
 
 
ac22439
35d9fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
ac22439
35d9fd0
 
 
ac22439
768a8fe
 
35d9fd0
768a8fe
35d9fd0
 
 
ac22439
35d9fd0
 
 
 
ac22439
35d9fd0
 
 
 
 
 
 
 
b664155
7d435b2
ac22439
35d9fd0
 
b664155
7d435b2
b664155
 
377170b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# deformes4D_engine.py
#
# Copyright (C) August 4, 2025  Carlos Rodrigues dos Santos
#
# Version: 2.0.2
#
# This file contains the Deformes4D Engine, which acts as the primary "Editor" or
# "Film Crew" specialist within the ADUC-SDR architecture. It implements the Camera (Ψ)
# and Distiller (Δ) concepts. Its core responsibilities include the low-level orchestration
# of video fragment generation (calling the LTX specialist), latent manipulation (calling
# the enhancer specialist), and final rendering/post-production tasks like HD mastering
# and audio generation. It executes the specific commands delegated by the AducOrchestrator.

import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
import shutil
from pathlib import Path
from typing import List, Tuple, Generator, Dict, Any, Optional

from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from latent_enhancer_specialist import latent_enhancer_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
from audio_specialist import audio_specialist_singleton
from tools.video_encode_tool import video_encode_tool_singleton

logger = logging.getLogger(__name__)

@dataclass
class LatentConditioningItem:
    """Represents a conditioning anchor in the latent space for the Camera (Ψ)."""
    latent_tensor: torch.Tensor
    media_frame_number: int
    conditioning_strength: float

class Deformes4DEngine:
    """
    Implements the Camera (Ψ) and Distiller (Δ) of the ADUC-SDR architecture.
    Orchestrates the generation, latent post-production, and final rendering of video fragments.
    """
    def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
        self.ltx_manager = ltx_manager
        self.workspace_dir = workspace_dir
        self._vae = None
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        logger.info("Deformes4D Specialist (ADUC-SDR Executor) initialized.")
        os.makedirs(self.workspace_dir, exist_ok=True)


    @property
    def vae(self):
        if self._vae is None:
            # Assumes the VAE from the first LTX worker is representative
            self._vae = self.ltx_manager.workers[0].pipeline.vae
        self._vae.to(self.device); self._vae.eval()
        return self._vae

    # --- HELPER METHODS ---

    @torch.no_grad()
    def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
        """Encodes a pixel-space tensor to the latent space using the VAE."""
        tensor = tensor.to(self.device, dtype=self.vae.dtype)
        return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)

    @torch.no_grad()
    def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
        """Decodes a latent-space tensor to pixels using the VAE."""
        latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
        timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
        return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)

    def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
        """Saves a pixel-space tensor as an MP4 video file."""
        if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
        video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
        video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
        video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
        with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
            for frame in video_np: writer.append_data(frame)

    def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
        """Resizes and fits an image to the target resolution for VAE encoding."""
        if image.size != target_resolution:
            return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
        return image

    def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
        """Converts a PIL Image to a latent tensor."""
        image_np = np.array(pil_image).astype(np.float32) / 255.0
        tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
        tensor = (tensor * 2.0) - 1.0
        return self.pixels_to_latents(tensor)

    # --- CORE ADUC-SDR LOGIC ---

    def generate_original_movie(self, keyframes: list, global_prompt: str, storyboard: list,
                                seconds_per_fragment: float, trim_percent: int,
                                handler_strength: float, destination_convergence_strength: float,
                                video_resolution: int, use_continuity_director: bool,
                                guidance_scale: float, stg_scale: float, num_inference_steps: int,
                                progress: gr.Progress = gr.Progress()):
        """
        Step 3: Production. Generates the original master video from keyframes.
        """
        FPS = 24
        FRAMES_PER_LATENT_CHUNK = 8
        LATENT_PROCESSING_CHUNK_SIZE = 4

        run_timestamp = int(time.time())
        temp_latent_dir = os.path.join(self.workspace_dir, f"temp_latents_{run_timestamp}")
        temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
        os.makedirs(temp_latent_dir, exist_ok=True)
        os.makedirs(temp_video_clips_dir, exist_ok=True)

        total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
        frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
        latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK

        DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
        DESTINATION_FRAME_TARGET = total_frames_brutos - 1

        base_ltx_params = {"guidance_scale": guidance_scale, "stg_scale": stg_scale, "num_inference_steps": num_inference_steps, "rescaling_scale": 0.15, "image_cond_noise_scale": 0.00}
        keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
        story_history = ""
        target_resolution_tuple = (video_resolution, video_resolution)
        eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
        latent_fragment_paths = []

        if len(keyframe_paths) < 2: raise gr.Error(f"Generation requires at least 2 keyframes. You provided {len(keyframe_paths)}.")
        num_transitions_to_generate = len(keyframe_paths) - 1

        logger.info("--- STARTING STAGE 1: Latent Fragment Generation ---")
        for i in range(num_transitions_to_generate):
            fragment_index = i + 1
            progress(i / num_transitions_to_generate, desc=f"Generating Latent {fragment_index}/{num_transitions_to_generate}")
            past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
            start_keyframe_path = keyframe_paths[i]
            destination_keyframe_path = keyframe_paths[i + 1]
            future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "The final scene."
            logger.info(f"Calling Gemini to generate cinematic decision for fragment {fragment_index}...")
            decision = gemini_singleton.get_cinematic_decision(global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, storyboard[i - 1] if i > 0 else "The beginning.", storyboard[i], future_story_prompt)
            transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
            story_history += f"\n- Act {fragment_index}: {motion_prompt}"
            conditioning_items = []
            if eco_latent_for_next_loop is None:
               img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
               conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
            else:
               conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
               conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
            img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
            conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
            current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
            logger.info(f"Calling LTX to generate video latents for fragment {fragment_index} ({total_frames_brutos} frames)...")
            latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
            num_latent_frames = latents_brutos.shape[2]
            logger.info(f"LTX responded with a latent tensor of shape {latents_brutos.shape}, representing ~{num_latent_frames * 8 + 1} video frames at {FPS} FPS.")
            last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
            eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
            dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
            latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
            latents_video = latents_video[:, :, 1:, :, :]
            del last_trim, latents_brutos; gc.collect(); torch.cuda.empty_cache()
            if transition_type == "cut":
                eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
            cpu_latent = latents_video.cpu()
            latent_path = os.path.join(temp_latent_dir, f"latent_fragment_{i:04d}.pt")
            torch.save(cpu_latent, latent_path)
            latent_fragment_paths.append(latent_path)
            del latents_video, cpu_latent; gc.collect()
        del eco_latent_for_next_loop, dejavu_latent_for_next_loop; gc.collect(); torch.cuda.empty_cache()

        logger.info(f"--- STARTING STAGE 2: Processing {len(latent_fragment_paths)} latents in chunks of {LATENT_PROCESSING_CHUNK_SIZE} ---")
        final_video_clip_paths = []
        num_chunks = -(-len(latent_fragment_paths) // LATENT_PROCESSING_CHUNK_SIZE)
        for i in range(num_chunks):
            chunk_start_index = i * LATENT_PROCESSING_CHUNK_SIZE
            chunk_end_index = chunk_start_index + LATENT_PROCESSING_CHUNK_SIZE
            chunk_paths = latent_fragment_paths[chunk_start_index:chunk_end_index]
            progress(i / num_chunks, desc=f"Processing & Decoding Batch {i+1}/{num_chunks}")
            tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
            tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)]
            sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
            del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
            logger.info(f"Batch {i+1} concatenated. Latent shape: {sub_group_latent.shape}")
            base_name = f"clip_{i:04d}_{run_timestamp}"
            current_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}.mp4")
            pixel_tensor = self.latents_to_pixels(sub_group_latent)
            self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=FPS)
            del pixel_tensor, sub_group_latent; gc.collect(); torch.cuda.empty_cache()
            final_video_clip_paths.append(current_clip_path)

        progress(0.98, desc="Final assembly of clips...")
        final_video_path = os.path.join(self.workspace_dir, f"original_movie_{run_timestamp}.mp4")
        video_encode_tool_singleton.concatenate_videos(video_paths=final_video_clip_paths, output_path=final_video_path, workspace_dir=self.workspace_dir)
        logger.info("Cleaning up temporary clip files...")
        try:
            shutil.rmtree(temp_video_clips_dir)
        except OSError as e:
            logger.warning(f"Could not remove temporary clip directory: {e}")
        logger.info(f"Process complete! Original video saved to: {final_video_path}")
        return {"final_path": final_video_path, "latent_paths": latent_fragment_paths}

    def upscale_latents_and_create_video(self, latent_paths: list, chunk_size: int, progress: gr.Progress):
        if not latent_paths:
            raise gr.Error("Cannot perform upscaling: no latent paths were provided.")
        logger.info("--- STARTING POST-PRODUCTION: Latent Upscaling ---")
        run_timestamp = int(time.time())
        temp_upscaled_clips_dir = os.path.join(self.workspace_dir, f"temp_upscaled_clips_{run_timestamp}")
        os.makedirs(temp_upscaled_clips_dir, exist_ok=True)
        final_upscaled_clip_paths = []
        num_chunks = -(-len(latent_paths) // chunk_size)
        for i in range(num_chunks):
            chunk_start_index = i * chunk_size
            chunk_end_index = chunk_start_index + chunk_size
            chunk_paths = latent_paths[chunk_start_index:chunk_end_index]
            progress(i / num_chunks, desc=f"Upscaling & Decoding Batch {i+1}/{num_chunks}")
            tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
            tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)]
            sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
            del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
            logger.info(f"Batch {i+1} loaded. Original latent shape: {sub_group_latent.shape}")
            upscaled_latent_chunk = latent_enhancer_specialist_singleton.upscale(sub_group_latent)
            del sub_group_latent; gc.collect(); torch.cuda.empty_cache()
            logger.info(f"Batch {i+1} upscaled. New latent shape: {upscaled_latent_chunk.shape}")
            pixel_tensor = self.latents_to_pixels(upscaled_latent_chunk)
            del upscaled_latent_chunk; gc.collect(); torch.cuda.empty_cache()
            base_name = f"upscaled_clip_{i:04d}_{run_timestamp}"
            current_clip_path = os.path.join(temp_upscaled_clips_dir, f"{base_name}.mp4")
            self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=24)
            final_upscaled_clip_paths.append(current_clip_path)
            del pixel_tensor; gc.collect(); torch.cuda.empty_cache()
            logger.info(f"Saved upscaled clip: {Path(current_clip_path).name}")
        progress(0.98, desc="Assembling upscaled clips...")
        final_video_path = os.path.join(self.workspace_dir, f"upscaled_movie_{run_timestamp}.mp4")
        video_encode_tool_singleton.concatenate_videos(video_paths=final_upscaled_clip_paths, output_path=final_video_path, workspace_dir=self.workspace_dir)
        logger.info("Cleaning up temporary upscaled clip files...")
        try:
            shutil.rmtree(temp_upscaled_clips_dir)
        except OSError as e:
            logger.warning(f"Could not remove temporary upscaled clip directory: {e}")
        logger.info(f"Latent upscaling complete! Final video at: {final_video_path}")
        yield {"final_path": final_video_path}

    def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress: gr.Progress):
        logger.info(f"--- STARTING POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---")
        progress(0.1, desc=f"Preparing for HD Mastering with SeedVR {model_version}...")
        run_timestamp = int(time.time())
        output_path = os.path.join(self.workspace_dir, f"hd_mastered_movie_{model_version}_{run_timestamp}.mp4")
        try:
            final_path = hd_specialist_singleton.process_video(
                input_video_path=source_video_path,
                output_video_path=output_path,
                prompt=prompt,
                model_version=model_version,
                steps=steps,
                progress=progress
            )
            logger.info(f"HD Mastering complete! Final video at: {final_path}")
            yield {"final_path": final_path}
        except Exception as e:
            logger.error(f"HD Mastering failed: {e}", exc_info=True)
            raise gr.Error(f"HD Mastering failed. Details: {e}")
    
    def generate_audio_for_final_video(self, source_video_path: str, audio_prompt: str, progress: gr.Progress):
        logger.info(f"--- STARTING POST-PRODUCTION: Audio Generation ---")
        progress(0.1, desc="Preparing for audio generation...")
        run_timestamp = int(time.time())
        try:
            result = subprocess.run(
                ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path],
                capture_output=True, text=True, check=True)
            duration = float(result.stdout.strip())
            logger.info(f"Source video duration: {duration:.2f} seconds.")
            progress(0.5, desc="Generating audio track...")
            output_path = os.path.join(self.workspace_dir, f"final_movie_with_audio_{run_timestamp}.mp4")
            final_path = audio_specialist_singleton.generate_audio_for_video(
                video_path=source_video_path,
                prompt=audio_prompt,
                duration_seconds=duration,
                output_path_override=output_path
            )
            logger.info(f"Audio generation complete! Final video with audio at: {final_path}")
            progress(1.0, desc="Audio generation complete!")
            yield {"final_path": final_path}
        except Exception as e:
            logger.error(f"Audio generation failed: {e}", exc_info=True)
            raise gr.Error(f"Audio generation failed. Details: {e}")

    def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
        """Internal helper to call the LTX manager."""
        final_ltx_params = {**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], 'video_total_frames': total_frames_to_generate, 'video_fps': 24, 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items}
        return self.ltx_manager.generate_latent_fragment(**final_ltx_params)

    def _quantize_to_multiple(self, n, m):
        """Helper to round n to the nearest multiple of m."""
        if m == 0: return n
        quantized = int(round(n / m) * m)
        return m if n > 0 and quantized == 0 else quantized