File size: 19,141 Bytes
e03c986 35d9fd0 e03c986 7d435b2 35d9fd0 b664155 1b8ed0f 35d9fd0 7d435b2 b664155 35d9fd0 48d9f58 887690a b664155 768a8fe 7d435b2 b664155 35d9fd0 b664155 e03c986 35d9fd0 e03c986 b664155 35d9fd0 1b8ed0f b664155 ac22439 b664155 35d9fd0 431a182 ac22439 431a182 b664155 ac22439 b664155 b7e85da ac22439 b7e85da b664155 ac22439 b664155 ac22439 b664155 35d9fd0 b664155 35d9fd0 1b8ed0f b664155 b7e85da b664155 35d9fd0 768a8fe b7e85da 35d9fd0 48d9f58 35d9fd0 768a8fe 35d9fd0 b664155 35d9fd0 b664155 35d9fd0 b664155 35d9fd0 b664155 35d9fd0 b664155 35d9fd0 b664155 35d9fd0 b664155 48d9f58 1b8ed0f 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f 21b2ae3 35d9fd0 7d435b2 35d9fd0 1b8ed0f 35d9fd0 7d435b2 35d9fd0 1b8ed0f 35d9fd0 1b8ed0f d2de905 35d9fd0 ac22439 35d9fd0 ac22439 35d9fd0 ac22439 768a8fe 35d9fd0 768a8fe 35d9fd0 ac22439 35d9fd0 ac22439 35d9fd0 b664155 7d435b2 ac22439 35d9fd0 b664155 7d435b2 b664155 377170b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# deformes4D_engine.py
#
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
#
# Version: 2.0.2
#
# This file contains the Deformes4D Engine, which acts as the primary "Editor" or
# "Film Crew" specialist within the ADUC-SDR architecture. It implements the Camera (Ψ)
# and Distiller (Δ) concepts. Its core responsibilities include the low-level orchestration
# of video fragment generation (calling the LTX specialist), latent manipulation (calling
# the enhancer specialist), and final rendering/post-production tasks like HD mastering
# and audio generation. It executes the specific commands delegated by the AducOrchestrator.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
import shutil
from pathlib import Path
from typing import List, Tuple, Generator, Dict, Any, Optional
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from latent_enhancer_specialist import latent_enhancer_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
from audio_specialist import audio_specialist_singleton
from tools.video_encode_tool import video_encode_tool_singleton
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Represents a conditioning anchor in the latent space for the Camera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implements the Camera (Ψ) and Distiller (Δ) of the ADUC-SDR architecture.
Orchestrates the generation, latent post-production, and final rendering of video fragments.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Deformes4D Specialist (ADUC-SDR Executor) initialized.")
os.makedirs(self.workspace_dir, exist_ok=True)
@property
def vae(self):
if self._vae is None:
# Assumes the VAE from the first LTX worker is representative
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# --- HELPER METHODS ---
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
"""Encodes a pixel-space tensor to the latent space using the VAE."""
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
"""Decodes a latent-space tensor to pixels using the VAE."""
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
"""Saves a pixel-space tensor as an MP4 video file."""
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
for frame in video_np: writer.append_data(frame)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
"""Resizes and fits an image to the target resolution for VAE encoding."""
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
"""Converts a PIL Image to a latent tensor."""
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
# --- CORE ADUC-SDR LOGIC ---
def generate_original_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
video_resolution: int, use_continuity_director: bool,
guidance_scale: float, stg_scale: float, num_inference_steps: int,
progress: gr.Progress = gr.Progress()):
"""
Step 3: Production. Generates the original master video from keyframes.
"""
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
LATENT_PROCESSING_CHUNK_SIZE = 4
run_timestamp = int(time.time())
temp_latent_dir = os.path.join(self.workspace_dir, f"temp_latents_{run_timestamp}")
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
os.makedirs(temp_latent_dir, exist_ok=True)
os.makedirs(temp_video_clips_dir, exist_ok=True)
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": guidance_scale, "stg_scale": stg_scale, "num_inference_steps": num_inference_steps, "rescaling_scale": 0.15, "image_cond_noise_scale": 0.00}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
target_resolution_tuple = (video_resolution, video_resolution)
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
latent_fragment_paths = []
if len(keyframe_paths) < 2: raise gr.Error(f"Generation requires at least 2 keyframes. You provided {len(keyframe_paths)}.")
num_transitions_to_generate = len(keyframe_paths) - 1
logger.info("--- STARTING STAGE 1: Latent Fragment Generation ---")
for i in range(num_transitions_to_generate):
fragment_index = i + 1
progress(i / num_transitions_to_generate, desc=f"Generating Latent {fragment_index}/{num_transitions_to_generate}")
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "The final scene."
logger.info(f"Calling Gemini to generate cinematic decision for fragment {fragment_index}...")
decision = gemini_singleton.get_cinematic_decision(global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, storyboard[i - 1] if i > 0 else "The beginning.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Act {fragment_index}: {motion_prompt}"
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
logger.info(f"Calling LTX to generate video latents for fragment {fragment_index} ({total_frames_brutos} frames)...")
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
num_latent_frames = latents_brutos.shape[2]
logger.info(f"LTX responded with a latent tensor of shape {latents_brutos.shape}, representing ~{num_latent_frames * 8 + 1} video frames at {FPS} FPS.")
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
del last_trim, latents_brutos; gc.collect(); torch.cuda.empty_cache()
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
cpu_latent = latents_video.cpu()
latent_path = os.path.join(temp_latent_dir, f"latent_fragment_{i:04d}.pt")
torch.save(cpu_latent, latent_path)
latent_fragment_paths.append(latent_path)
del latents_video, cpu_latent; gc.collect()
del eco_latent_for_next_loop, dejavu_latent_for_next_loop; gc.collect(); torch.cuda.empty_cache()
logger.info(f"--- STARTING STAGE 2: Processing {len(latent_fragment_paths)} latents in chunks of {LATENT_PROCESSING_CHUNK_SIZE} ---")
final_video_clip_paths = []
num_chunks = -(-len(latent_fragment_paths) // LATENT_PROCESSING_CHUNK_SIZE)
for i in range(num_chunks):
chunk_start_index = i * LATENT_PROCESSING_CHUNK_SIZE
chunk_end_index = chunk_start_index + LATENT_PROCESSING_CHUNK_SIZE
chunk_paths = latent_fragment_paths[chunk_start_index:chunk_end_index]
progress(i / num_chunks, desc=f"Processing & Decoding Batch {i+1}/{num_chunks}")
tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)]
sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
logger.info(f"Batch {i+1} concatenated. Latent shape: {sub_group_latent.shape}")
base_name = f"clip_{i:04d}_{run_timestamp}"
current_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}.mp4")
pixel_tensor = self.latents_to_pixels(sub_group_latent)
self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=FPS)
del pixel_tensor, sub_group_latent; gc.collect(); torch.cuda.empty_cache()
final_video_clip_paths.append(current_clip_path)
progress(0.98, desc="Final assembly of clips...")
final_video_path = os.path.join(self.workspace_dir, f"original_movie_{run_timestamp}.mp4")
video_encode_tool_singleton.concatenate_videos(video_paths=final_video_clip_paths, output_path=final_video_path, workspace_dir=self.workspace_dir)
logger.info("Cleaning up temporary clip files...")
try:
shutil.rmtree(temp_video_clips_dir)
except OSError as e:
logger.warning(f"Could not remove temporary clip directory: {e}")
logger.info(f"Process complete! Original video saved to: {final_video_path}")
return {"final_path": final_video_path, "latent_paths": latent_fragment_paths}
def upscale_latents_and_create_video(self, latent_paths: list, chunk_size: int, progress: gr.Progress):
if not latent_paths:
raise gr.Error("Cannot perform upscaling: no latent paths were provided.")
logger.info("--- STARTING POST-PRODUCTION: Latent Upscaling ---")
run_timestamp = int(time.time())
temp_upscaled_clips_dir = os.path.join(self.workspace_dir, f"temp_upscaled_clips_{run_timestamp}")
os.makedirs(temp_upscaled_clips_dir, exist_ok=True)
final_upscaled_clip_paths = []
num_chunks = -(-len(latent_paths) // chunk_size)
for i in range(num_chunks):
chunk_start_index = i * chunk_size
chunk_end_index = chunk_start_index + chunk_size
chunk_paths = latent_paths[chunk_start_index:chunk_end_index]
progress(i / num_chunks, desc=f"Upscaling & Decoding Batch {i+1}/{num_chunks}")
tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)]
sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
logger.info(f"Batch {i+1} loaded. Original latent shape: {sub_group_latent.shape}")
upscaled_latent_chunk = latent_enhancer_specialist_singleton.upscale(sub_group_latent)
del sub_group_latent; gc.collect(); torch.cuda.empty_cache()
logger.info(f"Batch {i+1} upscaled. New latent shape: {upscaled_latent_chunk.shape}")
pixel_tensor = self.latents_to_pixels(upscaled_latent_chunk)
del upscaled_latent_chunk; gc.collect(); torch.cuda.empty_cache()
base_name = f"upscaled_clip_{i:04d}_{run_timestamp}"
current_clip_path = os.path.join(temp_upscaled_clips_dir, f"{base_name}.mp4")
self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=24)
final_upscaled_clip_paths.append(current_clip_path)
del pixel_tensor; gc.collect(); torch.cuda.empty_cache()
logger.info(f"Saved upscaled clip: {Path(current_clip_path).name}")
progress(0.98, desc="Assembling upscaled clips...")
final_video_path = os.path.join(self.workspace_dir, f"upscaled_movie_{run_timestamp}.mp4")
video_encode_tool_singleton.concatenate_videos(video_paths=final_upscaled_clip_paths, output_path=final_video_path, workspace_dir=self.workspace_dir)
logger.info("Cleaning up temporary upscaled clip files...")
try:
shutil.rmtree(temp_upscaled_clips_dir)
except OSError as e:
logger.warning(f"Could not remove temporary upscaled clip directory: {e}")
logger.info(f"Latent upscaling complete! Final video at: {final_video_path}")
yield {"final_path": final_video_path}
def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress: gr.Progress):
logger.info(f"--- STARTING POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---")
progress(0.1, desc=f"Preparing for HD Mastering with SeedVR {model_version}...")
run_timestamp = int(time.time())
output_path = os.path.join(self.workspace_dir, f"hd_mastered_movie_{model_version}_{run_timestamp}.mp4")
try:
final_path = hd_specialist_singleton.process_video(
input_video_path=source_video_path,
output_video_path=output_path,
prompt=prompt,
model_version=model_version,
steps=steps,
progress=progress
)
logger.info(f"HD Mastering complete! Final video at: {final_path}")
yield {"final_path": final_path}
except Exception as e:
logger.error(f"HD Mastering failed: {e}", exc_info=True)
raise gr.Error(f"HD Mastering failed. Details: {e}")
def generate_audio_for_final_video(self, source_video_path: str, audio_prompt: str, progress: gr.Progress):
logger.info(f"--- STARTING POST-PRODUCTION: Audio Generation ---")
progress(0.1, desc="Preparing for audio generation...")
run_timestamp = int(time.time())
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path],
capture_output=True, text=True, check=True)
duration = float(result.stdout.strip())
logger.info(f"Source video duration: {duration:.2f} seconds.")
progress(0.5, desc="Generating audio track...")
output_path = os.path.join(self.workspace_dir, f"final_movie_with_audio_{run_timestamp}.mp4")
final_path = audio_specialist_singleton.generate_audio_for_video(
video_path=source_video_path,
prompt=audio_prompt,
duration_seconds=duration,
output_path_override=output_path
)
logger.info(f"Audio generation complete! Final video with audio at: {final_path}")
progress(1.0, desc="Audio generation complete!")
yield {"final_path": final_path}
except Exception as e:
logger.error(f"Audio generation failed: {e}", exc_info=True)
raise gr.Error(f"Audio generation failed. Details: {e}")
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
"""Internal helper to call the LTX manager."""
final_ltx_params = {**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], 'video_total_frames': total_frames_to_generate, 'video_fps': 24, 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items}
return self.ltx_manager.generate_latent_fragment(**final_ltx_params)
def _quantize_to_multiple(self, n, m):
"""Helper to round n to the nearest multiple of m."""
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized |