File size: 12,417 Bytes
3470339 0b0818c 3470339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# gemini_helpers.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
# sob os termos da Licença Pública Geral Affero GNU como publicada pela
# Free Software Foundation, seja a versão 3 da Licença, ou
# (a seu critério) qualquer versão posterior.
#
# AVISO DE PATENTE PENDENTE: O método e sistema ADUC implementado neste
# software está em processo de patenteamento. Consulte NOTICE.md.
import os
import logging
import json
import gradio as gr
from PIL import Image
import google.generativeai as genai
import re
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def robust_json_parser(raw_text: str) -> dict:
clean_text = raw_text.strip()
try:
# Tenta encontrar o JSON delimitado por ```json ... ```
match = re.search(r'```json\s*(\{.*?\})\s*```', clean_text, re.DOTALL)
if match:
json_str = match.group(1)
return json.loads(json_str)
# Se não encontrar, tenta encontrar o primeiro '{' e o último '}'
start_index = clean_text.find('{')
end_index = clean_text.rfind('}')
if start_index != -1 and end_index != -1 and end_index > start_index:
json_str = clean_text[start_index : end_index + 1]
return json.loads(json_str)
else:
raise ValueError("Nenhum objeto JSON válido foi encontrado na resposta da IA.")
except json.JSONDecodeError as e:
logger.error(f"Falha ao decodificar JSON. A IA retornou o seguinte texto:\n---\n{raw_text}\n---")
raise ValueError(f"A IA retornou um formato de JSON inválido: {e}")
class GeminiSingleton:
def __init__(self):
self.api_key = os.environ.get("GEMINI_API_KEY")
if self.api_key:
genai.configure(api_key=self.api_key)
# Modelo mais recente e capaz para tarefas complexas de visão e raciocínio.
self.model = genai.GenerativeModel('gemini-2.0-flash')
logger.info("Especialista Gemini (1.5 Pro) inicializado com sucesso.")
else:
self.model = None
logger.warning("Chave da API Gemini não encontrada. Especialista desativado.")
def _check_model(self):
if not self.model:
raise gr.Error("A chave da API do Google Gemini não está configurada (GEMINI_API_KEY).")
def _read_prompt_template(self, filename: str) -> str:
try:
with open(os.path.join("prompts", filename), "r", encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
raise gr.Error(f"Arquivo de prompt não encontrado: prompts/{filename}")
def generate_storyboard(self, prompt: str, num_keyframes: int, ref_image_paths: list[str]) -> list[str]:
self._check_model()
try:
template = self._read_prompt_template("unified_storyboard_prompt.txt")
storyboard_prompt = template.format(user_prompt=prompt, num_fragments=num_keyframes)
model_contents = [storyboard_prompt] + [Image.open(p) for p in ref_image_paths]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (generate_storyboard) ---\n{response.text}\n--------------------")
storyboard_data = robust_json_parser(response.text)
storyboard = storyboard_data.get("scene_storyboard", [])
if not storyboard or len(storyboard) != num_keyframes: raise ValueError(f"Número incorreto de cenas gerado.")
return storyboard
except Exception as e:
raise gr.Error(f"O Roteirista (Gemini) falhou: {e}")
def select_keyframes_from_pool(self, storyboard: list, base_image_paths: list[str], pool_image_paths: list[str]) -> list[str]:
self._check_model()
if not pool_image_paths:
raise gr.Error("O 'banco de imagens' (Imagens Adicionais) está vazio.")
try:
template = self._read_prompt_template("keyframe_selection_prompt.txt")
image_map = {f"IMG-{i+1}": path for i, path in enumerate(pool_image_paths)}
base_image_map = {f"BASE-{i+1}": path for i, path in enumerate(base_image_paths)}
model_contents = ["# Reference Images (Story Base)"]
for identifier, path in base_image_map.items():
model_contents.extend([f"Identifier: {identifier}", Image.open(path)])
model_contents.append("\n# Image Pool (Scene Bank)")
for identifier, path in image_map.items():
model_contents.extend([f"Identifier: {identifier}", Image.open(path)])
storyboard_str = "\n".join([f"- Scene {i+1}: {s}" for i, s in enumerate(storyboard)])
selection_prompt = template.format(storyboard_str=storyboard_str, image_identifiers=list(image_map.keys()))
model_contents.append(selection_prompt)
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (select_keyframes_from_pool) ---\n{response.text}\n--------------------")
selection_data = robust_json_parser(response.text)
selected_identifiers = selection_data.get("selected_image_identifiers", [])
if len(selected_identifiers) != len(storyboard):
raise ValueError("A IA não selecionou o número correto de imagens para as cenas.")
selected_paths = [image_map[identifier] for identifier in selected_identifiers]
return selected_paths
except Exception as e:
raise gr.Error(f"O Fotógrafo (Gemini) falhou ao selecionar as imagens: {e}")
def get_anticipatory_keyframe_prompt(self, global_prompt: str, scene_history: str, current_scene_desc: str, future_scene_desc: str, last_image_path: str, fixed_ref_paths: list[str]) -> str:
self._check_model()
try:
template = self._read_prompt_template("anticipatory_keyframe_prompt.txt")
director_prompt = template.format(
historico_prompt=scene_history,
cena_atual=current_scene_desc,
cena_futura=future_scene_desc
)
model_contents = [
"# CONTEXTO:",
f"- Global Story Goal: {global_prompt}",
"# VISUAL ASSETS:",
"Current Base Image [IMG-BASE]:",
Image.open(last_image_path)
]
ref_counter = 1
for path in fixed_ref_paths:
if path != last_image_path:
model_contents.extend([f"General Reference Image [IMG-REF-{ref_counter}]:", Image.open(path)])
ref_counter += 1
model_contents.append(director_prompt)
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_anticipatory_keyframe_prompt) ---\n{response.text}\n--------------------")
final_flux_prompt = response.text.strip()
return final_flux_prompt
except Exception as e:
raise gr.Error(f"O Diretor de Arte (Gemini) falhou: {e}")
def get_initial_motion_prompt(self, user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str) -> str:
"""Gera o prompt de movimento para a PRIMEIRA transição, que não tem um 'passado'."""
self._check_model()
try:
template = self._read_prompt_template("initial_motion_prompt.txt")
prompt_text = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
model_contents = [
prompt_text,
"START Image:",
Image.open(start_image_path),
"DESTINATION Image:",
Image.open(destination_image_path)
]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_initial_motion_prompt) ---\n{response.text}\n--------------------")
return response.text.strip()
except Exception as e:
raise gr.Error(f"O Cineasta Inicial (Gemini) falhou: {e}")
def get_cinematic_decision(self, global_prompt: str, story_history: str,
past_keyframe_path: str, present_keyframe_path: str, future_keyframe_path: str,
past_scene_desc: str, present_scene_desc: str, future_scene_desc: str) -> dict:
"""
Atua como um 'Cineasta', analisando passado, presente e futuro para tomar decisões
de edição e gerar prompts de movimento detalhados.
"""
self._check_model()
try:
template = self._read_prompt_template("cinematic_director_prompt.txt")
prompt_text = template.format(
global_prompt=global_prompt,
story_history=story_history,
past_scene_desc=past_scene_desc,
present_scene_desc=present_scene_desc,
future_scene_desc=future_scene_desc
)
model_contents = [
prompt_text,
"[PAST_IMAGE]:", Image.open(past_keyframe_path),
"[PRESENT_IMAGE]:", Image.open(present_keyframe_path),
"[FUTURE_IMAGE]:", Image.open(future_keyframe_path)
]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_cinematic_decision) ---\n{response.text}\n--------------------")
decision_data = robust_json_parser(response.text)
if "transition_type" not in decision_data or "motion_prompt" not in decision_data:
raise ValueError("Resposta da IA (Cineasta) está mal formatada. Faltam 'transition_type' ou 'motion_prompt'.")
return decision_data
except Exception as e:
# Fallback para uma decisão segura em caso de erro
logger.error(f"O Diretor de Cinema (Gemini) falhou: {e}. Usando fallback para 'continuous'.")
return {
"transition_type": "continuous",
"motion_prompt": f"A smooth, continuous cinematic transition from '{present_scene_desc}' to '{future_scene_desc}'."
}
def get_sound_director_prompt(self, audio_history: str,
past_keyframe_path: str, present_keyframe_path: str, future_keyframe_path: str,
present_scene_desc: str, motion_prompt: str, future_scene_desc: str) -> str:
"""
Atua como um 'Diretor de Som', analisando o contexto completo para criar um prompt
de áudio imersivo e contínuo para a cena atual.
"""
self._check_model()
try:
template = self._read_prompt_template("sound_director_prompt.txt")
prompt_text = template.format(
audio_history=audio_history,
present_scene_desc=present_scene_desc,
motion_prompt=motion_prompt,
future_scene_desc=future_scene_desc
)
model_contents = [
prompt_text,
"[PAST_IMAGE]:", Image.open(past_keyframe_path),
"[PRESENT_IMAGE]:", Image.open(present_keyframe_path),
"[FUTURE_IMAGE]:", Image.open(future_keyframe_path)
]
response = self.model.generate_content(model_contents)
logger.info(f"--- RESPOSTA COMPLETA DO GEMINI (get_sound_director_prompt) ---\n{response.text}\n--------------------")
return response.text.strip()
except Exception as e:
logger.error(f"O Diretor de Som (Gemini) falhou: {e}. Usando fallback.")
return f"Sound effects matching the scene: {present_scene_desc}"
gemini_singleton = GeminiSingleton() |