File size: 18,840 Bytes
e03c986 b664155 e03c986 b664155 1b8ed0f b664155 86581fa 48d9f58 887690a b664155 768a8fe b664155 e03c986 b664155 e03c986 b664155 82712d4 1b8ed0f b664155 887690a 431a182 b664155 b7e85da b664155 48d9f58 1b8ed0f 48d9f58 1b8ed0f 768a8fe 887690a b7e85da b664155 e03c986 b664155 1b8ed0f b664155 1b8ed0f b664155 1b8ed0f b664155 b7e85da b664155 768a8fe 70b520b 768a8fe b7e85da 768a8fe 48d9f58 1b8ed0f 768a8fe 48d9f58 768a8fe 1b8ed0f b664155 1b8ed0f b664155 1b8ed0f b664155 48d9f58 b664155 5da5952 b664155 768a8fe b664155 768a8fe b664155 768a8fe b664155 48d9f58 b664155 48d9f58 351cd3f 1b8ed0f 48d9f58 82712d4 1b8ed0f f06d030 1b8ed0f 48d9f58 1b8ed0f 48d9f58 1b8ed0f 21b2ae3 1b8ed0f 21b2ae3 1b8ed0f 431a182 1b8ed0f d2de905 768a8fe 1b8ed0f 768a8fe 48d9f58 768a8fe 1b8ed0f 768a8fe 3b91b34 1b8ed0f 768a8fe 1b8ed0f 768a8fe b664155 768a8fe b664155 768a8fe b664155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
import shutil
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
# [REATORADO] Importa o novo especialista
from latent_enhancer_specialist import latent_enhancer_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
from audio_specialist import audio_specialist_singleton
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR) inicializado.")
# Cria o diretório de workspace se não existir
os.makedirs(self.workspace_dir, exist_ok=True)
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# --- MÉTODOS AUXILIARES ---
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
for frame in video_np: writer.append_data(frame)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str):
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
with open(list_file_path, 'w', encoding='utf-8') as f:
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
# Tenta usar aceleração de hardware (GPU) para a concatenação, se disponível
cmd_list = ['ffmpeg', '-y', '-hwaccel', 'auto', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
logger.info(f"Concatenando {len(video_paths)} clipes de vídeo em {output_path}...")
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
logger.error(f"Erro no FFmpeg: {e.stderr}")
# Tenta novamente sem aceleração de hardware como fallback
logger.info("Tentando concatenar novamente sem aceleração de hardware...")
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e_fallback:
logger.error(f"Erro no FFmpeg (fallback): {e_fallback.stderr}")
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e_fallback.stderr}")
# --- NÚCLEO DA LÓGICA ADUC-SDR ---
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
# --- ETAPA 0: SETUP ---
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
LATENT_PROCESSING_CHUNK_SIZE = 10 # Processa 10 fragmentos latentes por vez para economizar memória
run_timestamp = int(time.time())
temp_latent_dir = os.path.join(self.workspace_dir, f"temp_latents_{run_timestamp}")
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
os.makedirs(temp_latent_dir, exist_ok=True)
os.makedirs(temp_video_clips_dir, exist_ok=True)
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20, "image_cond_noise_scale": 0.00}
refine_ltx_params = {"motion_prompt": "", "guidance_scale": 1.0, "denoise_strength": 0.35, "refine_steps": 12}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
target_resolution_tuple = (video_resolution, video_resolution)
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
latent_fragment_paths = [] # Lista para armazenar caminhos dos latentes salvos no disco
if len(keyframe_paths) < 2: raise gr.Error(f"A geração requer no mínimo 2 keyframes. Você forneceu {len(keyframe_paths)}.")
num_transitions_to_generate = len(keyframe_paths) - 1
# --- ETAPA 1: GERAR FRAGMENTOS LATENTES E SALVAR EM DISCO ---
logger.info("--- INICIANDO ETAPA 1: Geração de Fragmentos Latentes ---")
for i in range(num_transitions_to_generate):
fragment_index = i + 1
progress(i / num_transitions_to_generate, desc=f"Gerando Latente {fragment_index}/{num_transitions_to_generate}")
# (Lógica de decisão do Gemini e preparação de âncoras - inalterada)
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
del last_trim, latents_brutos
gc.collect(); torch.cuda.empty_cache()
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
# [REATORADO] Mover latente para CPU e salvar no disco para liberar VRAM
cpu_latent = latents_video.cpu()
latent_path = os.path.join(temp_latent_dir, f"latent_fragment_{i:04d}.pt")
torch.save(cpu_latent, latent_path)
latent_fragment_paths.append(latent_path)
del latents_video, cpu_latent
gc.collect()
del eco_latent_for_next_loop, dejavu_latent_for_next_loop
gc.collect(); torch.cuda.empty_cache()
# --- ETAPA 2: PROCESSAR LATENTES EM LOTES (CHUNKS) ---
logger.info(f"--- INICIANDO ETAPA 2: Processamento de {len(latent_fragment_paths)} latentes em lotes de {LATENT_PROCESSING_CHUNK_SIZE} ---")
final_video_clip_paths = []
num_chunks = -(-len(latent_fragment_paths) // LATENT_PROCESSING_CHUNK_SIZE) # Ceiling division
for i in range(num_chunks):
chunk_start_index = i * LATENT_PROCESSING_CHUNK_SIZE
chunk_end_index = chunk_start_index + LATENT_PROCESSING_CHUNK_SIZE
chunk_paths = latent_fragment_paths[chunk_start_index:chunk_end_index]
progress(i / num_chunks, desc=f"Processando Lote {i+1}/{num_chunks}")
# Carrega os tensores do lote atual do disco para a GPU
tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
# Concatena os tensores do lote, removendo o latente de sobreposição
tensors_para_concatenar = [
frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag
for j, frag in enumerate(tensors_in_chunk)
]
sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
del tensors_in_chunk, tensors_para_concatenar
gc.collect(); torch.cuda.empty_cache()
logger.info(f"Lote {i+1} concatenado. Shape do sub-latente: {sub_group_latent.shape}")
# 1. (Opcional) Upscaler Latente
if use_upscaler:
logger.info(f"Aplicando Upscaler no lote {i+1}...")
sub_group_latent = latent_enhancer_specialist_singleton.upscale(sub_group_latent)
gc.collect(); torch.cuda.empty_cache()
# 2. Decodificar Latente para Vídeo (com ou sem áudio)
base_name = f"clip_{i:04d}_{run_timestamp}"
current_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}_temp.mp4")
if use_audio:
# O áudio é gerado para o prompt global por enquanto. Pode ser adaptado.
current_clip_path = self._generate_video_and_audio_from_latents(sub_group_latent, global_prompt, base_name)
else:
pixel_tensor = self.latents_to_pixels(sub_group_latent)
self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=FPS)
del pixel_tensor
del sub_group_latent
gc.collect(); torch.cuda.empty_cache()
# 3. (Opcional) Masterização HD
if use_hd:
logger.info(f"Aplicando masterização HD no clipe {i+1}...")
hd_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}_hd.mp4")
try:
hd_specialist_singleton.process_video(input_video_path=current_clip_path, output_video_path=hd_clip_path, prompt=global_prompt)
# Apaga o clipe não-HD para economizar espaço
if os.path.exists(current_clip_path) and current_clip_path != hd_clip_path:
os.remove(current_clip_path)
current_clip_path = hd_clip_path
except Exception as e:
logger.error(f"Falha na masterização HD do clipe {i+1}: {e}. Usando versão padrão.")
# 4. Adicionar caminho do clipe final à lista
final_video_clip_paths.append(current_clip_path)
#if use_refiner:
# progress(0.8, desc="Refinando continuidade visual...")
# # [REATORADO] Chamada para o novo especialista
# # OBS: Refinamento foi desativado conforme solicitado por degradar a lógica das keyframes.
# --- ETAPA 3: MONTAGEM FINAL ---
progress(0.98, desc="Montagem final dos clipes...")
final_video_path = os.path.join(self.workspace_dir, f"filme_final_{run_timestamp}.mp4")
self.concatenate_videos_ffmpeg(final_video_clip_paths, final_video_path)
# --- ETAPA 4: LIMPEZA ---
logger.info("Limpando arquivos temporários...")
try:
shutil.rmtree(temp_latent_dir)
shutil.rmtree(temp_video_clips_dir)
concat_list_path = os.path.join(self.workspace_dir, "concat_list.txt")
if os.path.exists(concat_list_path):
os.remove(concat_list_path)
except OSError as e:
logger.warning(f"Não foi possível remover os diretórios temporários: {e}")
logger.info(f"Processo concluído! Vídeo final salvo em: {final_video_path}")
yield {"final_path": final_video_path}
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
# Este método agora opera em um diretório temporário para os clipes
temp_video_clips_dir = os.path.dirname(os.path.join(self.workspace_dir, base_name)) # Hack para obter o diretório correto
silent_video_path = os.path.join(temp_video_clips_dir, f"{base_name}_silent.mp4")
pixel_tensor = self.latents_to_pixels(latent_tensor)
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
del pixel_tensor; gc.collect(); torch.cuda.empty_cache()
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
frag_duration = float(result.stdout.strip())
except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
logger.warning(f"ffprobe falhou. Calculando duração manualmente a partir dos latentes.")
# O VAE interpola, então o número de frames é (num_latentes - 1) * 8 + 1 (aproximadamente)
num_pixel_frames = (latent_tensor.shape[2] - 1) * 8 + 1
frag_duration = num_pixel_frames / 24.0
# Salva o vídeo com áudio no mesmo diretório temporário
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=frag_duration,
output_path_override=os.path.join(temp_video_clips_dir, f"{base_name}_with_audio.mp4")
)
if os.path.exists(silent_video_path):
os.remove(silent_video_path)
return video_with_audio_path
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
final_ltx_params = {
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
gc.collect()
torch.cuda.empty_cache()
return new_full_latents
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized |