File size: 5,380 Bytes
478560e
 
5137a03
 
 
3dce029
5137a03
3dce029
5137a03
 
3dce029
 
 
 
 
 
 
478560e
 
 
 
 
 
 
 
3dce029
 
 
5137a03
 
 
478560e
 
 
 
 
 
 
 
 
 
5137a03
 
3dce029
5137a03
3dce029
5137a03
3dce029
 
 
 
5137a03
478560e
 
 
 
 
 
 
 
 
 
3dce029
478560e
3dce029
 
 
5137a03
3dce029
 
 
 
 
 
478560e
 
 
 
 
3dce029
5137a03
3dce029
 
 
 
 
478560e
3dce029
 
 
478560e
3dce029
 
 
 
5137a03
3dce029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478560e
3dce029
 
 
478560e
3dce029
 
 
 
 
5137a03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# hd_specialist.py (Versão Final - Estrutura de Arquivos Corrigida)
#https://huggingface.co/spaces/ByteDance-Seed/SeedVR2-3B
import torch
import imageio
import os
import gc
import logging
import numpy as np
from PIL import Image
from tqdm import tqdm
import shlex
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
from omegaconf import OmegaConf

# --- Importações diretas, assumindo que as pastas estão na raiz ---
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from einops import rearrange

logger = logging.getLogger(__name__)

# Função auxiliar para download
def _load_file_from_url(url, model_dir='./', file_name=None):
    os.makedirs(model_dir, exist_ok=True)
    filename = file_name or os.path.basename(urlparse(url).path)
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        logger.info(f'Baixando: "{url}" para {cached_file}')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
    return cached_file

class HDSpecialist:
    """
    Implementa o Especialista HD (Δ+) usando a infraestrutura oficial do SeedVR.
    """
    def __init__(self, workspace_dir="deformes_workspace"):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.runner = None
        self.workspace_dir = workspace_dir
        self.is_initialized = False
        logger.info("Especialista HD (SeedVR) inicializado. Modelo será carregado sob demanda.")

    def _setup_dependencies(self):
        """Instala dependências complexas como Apex."""
        logger.info("Configurando dependências do SeedVR (Apex)...")
        apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
        apex_wheel_path = _load_file_from_url(url=apex_url)
        
        # Instala a roda do Apex baixada
        subprocess.run(shlex.split(f"pip install {apex_wheel_path}"), check=True)
        logger.info("✅ Dependência Apex instalada com sucesso.")

    def _download_models(self):
        """Baixa os checkpoints necessários para o SeedVR2."""
        logger.info("Verificando e baixando modelos do SeedVR2...")
        ckpt_dir = Path('./ckpts')
        ckpt_dir.mkdir(exist_ok=True)

        pretrain_model_url = {
            'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
            'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
            'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
            'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
        }
        
        _load_file_from_url(url=pretrain_model_url['dit'], model_dir='./ckpts/')
        _load_file_from_url(url=pretrain_model_url['vae'], model_dir='./ckpts/')
        _load_file_from_url(url=pretrain_model_url['pos_emb'])
        _load_file_from_url(url=pretrain_model_url['neg_emb'])
        logger.info("Modelos do SeedVR2 baixados com sucesso.")

    def _initialize_runner(self):
        """Carrega e configura o modelo SeedVR sob demanda."""
        if self.runner is not None:
            return

        self._setup_dependencies()
        self._download_models()

        logger.info("Inicializando o runner do SeedVR2...")
        config_path = os.path.join('./configs_3b', 'main.yaml')
        config = load_config(config_path)
        
        self.runner = VideoDiffusionInfer(config)
        OmegaConf.set_readonly(self.runner.config, False)
        
        self.runner.configure_dit_model(device=self.device, checkpoint='./ckpts/seedvr2_ema_3b.pth')
        self.runner.configure_vae_model()
        
        if hasattr(self.runner.vae, "set_memory_limit"):
            self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
        
        self.is_initialized = True
        logger.info("Runner do SeedVR2 inicializado e pronto.")

    def _unload_runner(self):
        """Remove o runner da VRAM para liberar recursos."""
        if self.runner is not None:
            del self.runner
            self.runner = None
            gc.collect()
            torch.cuda.empty_cache()
            self.is_initialized = False
            logger.info("Runner do SeedVR2 descarregado da VRAM.")

    def process_video(self, input_video_path: str, output_video_path: str, prompt: str, seed: int = 666, fps_out: int = 24) -> str:
        """Aplica o aprimoramento HD a um vídeo usando a lógica oficial do SeedVR."""
        try:
            self._initialize_runner()
            set_seed(seed, same_across_ranks=True)
            # ... (O resto da função process_video permanece exatamente o mesmo da resposta anterior) ...

        finally:
            self._unload_runner()

# Instância Singleton
hd_specialist_singleton = HDSpecialist()