File size: 15,457 Bytes
e03c986 b664155 e03c986 b664155 48d9f58 887690a b664155 768a8fe b664155 e03c986 b664155 e03c986 b664155 82712d4 b664155 887690a 431a182 b664155 b7e85da b664155 48d9f58 768a8fe 887690a b7e85da b664155 e03c986 b664155 b7e85da b664155 768a8fe 70b520b 768a8fe b7e85da 768a8fe 48d9f58 768a8fe 48d9f58 768a8fe b664155 48d9f58 b664155 48d9f58 b664155 48d9f58 b664155 5da5952 b664155 768a8fe b664155 768a8fe b664155 768a8fe b664155 48d9f58 b664155 48d9f58 351cd3f 768a8fe 48d9f58 768a8fe 48d9f58 82712d4 48d9f58 f06d030 768a8fe 48d9f58 768a8fe e03c986 48d9f58 768a8fe 48d9f58 768a8fe 48d9f58 b7e85da 48d9f58 b7e85da 48d9f58 431a182 48d9f58 768a8fe 48d9f58 d2de905 768a8fe b7e85da 768a8fe 48d9f58 768a8fe b7e85da 768a8fe 3b91b34 768a8fe b664155 768a8fe b664155 768a8fe b664155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from latent_enhancer_specialist import latent_enhancer_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
from audio_specialist import audio_specialist_singleton
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# --- MÉTODOS AUXILIARES ---
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
for frame in video_np: writer.append_data(frame)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str):
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
with open(list_file_path, 'w', encoding='utf-8') as f:
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
logger.info(f"Concatenando {len(video_paths)} clipes de vídeo em {output_path}...")
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
logger.error(f"Erro no FFmpeg: {e.stderr}")
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
# --- NÚCLEO DA LÓGICA ADUC-SDR ---
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20, "image_cond_noise_scale": 0.00}
refine_ltx_params = {"motion_prompt": "", "guidance_scale": 1.0, "denoise_strength": 0.35, "refine_steps": 12}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
target_resolution_tuple = (video_resolution, video_resolution)
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
latent_fragments, latent_fragment_lengths = [], []
if len(keyframe_paths) < 2: raise gr.Error(f"A geração requer no mínimo 2 keyframes. Você forneceu {len(keyframe_paths)}.")
num_transitions_to_generate = len(keyframe_paths) - 1
for i in range(num_transitions_to_generate):
fragment_index = i + 1
progress(i / num_transitions_to_generate, desc=f"Gerando Latentes {fragment_index}/{num_transitions_to_generate}")
# ... (Lógica de decisão do Gemini e preparação de âncoras) ...
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
del last_trim, latents_brutos
gc.collect(); torch.cuda.empty_cache()
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
if use_upscaler:
# [REATORADO] Chamada para o novo especialista
latents_video = latent_enhancer_specialist_singleton.upscale(latents_video)
latent_fragments.append(latents_video)
latent_fragment_lengths.append(latents_video.shape[2])
del eco_latent_for_next_loop, dejavu_latent_for_next_loop
gc.collect(); torch.cuda.empty_cache()
logger.info("--- CONCATENANDO E REFINANDO SUPER-LATENTE ---")
tensors_para_concatenar = [frag.to(self.device)[:, :, :-1, :, :] if i < len(latent_fragments) - 1 else frag.to(self.device) for i, frag in enumerate(latent_fragments)]
del latent_fragments; gc.collect(); torch.cuda.empty_cache()
processed_latents = torch.cat(tensors_para_concatenar, dim=2)
del tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
logger.info(f"Concatenação concluída. Shape do super-latente: {processed_latents.shape}")
if use_refiner:
progress(0.8, desc="Refinando continuidade visual...")
# [REATORADO] Chamada para o novo especialista
processed_latents = latent_enhancer_specialist_singleton.refine(processed_latents, **refine_ltx_params)
logger.info("--- DIVIDINDO SUPER-LATENTE E PROCESSANDO FRAGMENTOS INDIVIDUALMENTE ---")
adjusted_lengths = [l - 1 if i < len(latent_fragment_lengths) - 1 else l for i, l in enumerate(latent_fragment_lengths)]
refined_fragments = torch.split(processed_latents, adjusted_lengths, dim=2)
del processed_latents; gc.collect(); torch.cuda.empty_cache()
final_video_paths = []
num_final_fragments = len(refined_fragments)
for i, fragment_latent in enumerate(refined_fragments):
progress(0.85 + (0.1 * (i / num_final_fragments)), desc=f"Finalizando Clipe {i+1}/{num_final_fragments}")
base_name = f"fragment_{i}_{int(time.time())}"
current_path = os.path.join(self.workspace_dir, f"{base_name}_temp.mp4")
if use_audio:
current_path = self._generate_video_and_audio_from_latents(fragment_latent, global_prompt, base_name)
else:
pixel_tensor = self.latents_to_pixels(fragment_latent)
self.save_video_from_tensor(pixel_tensor, current_path, fps=24)
del pixel_tensor
gc.collect(); torch.cuda.empty_cache()
if use_hd:
hd_output_path = os.path.join(self.workspace_dir, f"{base_name}_hd.mp4")
try:
hd_specialist_singleton.process_video(input_video_path=current_path, output_video_path=hd_output_path, prompt=" ")
os.remove(current_path)
final_video_paths.append(hd_output_path)
except Exception as e:
logger.error(f"Falha na masterização HD do fragmento {i+1}: {e}. Usando versão padrão.")
os.rename(current_path, hd_output_path)
final_video_paths.append(hd_output_path)
else:
final_video_paths.append(current_path)
del refined_fragments; gc.collect(); torch.cuda.empty_cache()
progress(0.98, desc="Montagem final...")
final_movie_path = os.path.join(self.workspace_dir, f"movie_{int(time.time())}_FINAL.mp4")
self.concatenate_videos_ffmpeg(final_video_paths, final_movie_path)
for path in final_video_paths:
if os.path.exists(path):
os.remove(path)
logger.info(f"Processo concluído! Vídeo final salvo em: {final_movie_path}")
yield {"final_path": final_movie_path}
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent_for_audio.mp4")
pixel_tensor = self.latents_to_pixels(latent_tensor)
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
del pixel_tensor; gc.collect(); torch.cuda.empty_cache()
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
frag_duration = float(result.stdout.strip())
except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
logger.warning(f"ffprobe falhou. Calculando duração manualmente.")
num_pixel_frames = latent_tensor.shape[2] * 8
frag_duration = num_pixel_frames / 24.0
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=frag_duration)
if os.path.exists(silent_video_path):
os.remove(silent_video_path)
return video_with_audio_path
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
final_ltx_params = {
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
gc.collect()
torch.cuda.empty_cache()
return new_full_latents
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized |