File size: 8,529 Bytes
f5c99ab 5137a03 b954723 5137a03 3dce029 5137a03 3dce029 5137a03 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 478560e 3dce029 5137a03 478560e f5c99ab 478560e f5c99ab 478560e 5137a03 f5c99ab 5137a03 3dce029 5137a03 3dce029 f5c99ab 478560e 3dce029 f5c99ab 3dce029 5137a03 f5c99ab 3dce029 f5c99ab 3dce029 478560e f5c99ab 3dce029 f5c99ab 3dce029 5137a03 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 5137a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# hd_specialist.py
#
# Copyright (C) 2025 Carlos Rodrigues dos Santos
#
# This file implements the HD Specialist (Δ+), which uses the SeedVR model
# for video super-resolution. It's designed to be called by the ADUC orchestrator
# to perform the final HD mastering pass on a generated video. It manages the
# loading/unloading of the heavy SeedVR models to conserve VRAM and can switch
# between different model sizes (e.g., 3B and 7B).
import torch
import gradio as gr
import imageio
import os
import gc
import logging
import numpy as np
from PIL import Image
from tqdm import tqdm
import shlex
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
from omegaconf import OmegaConf
import mediapy
from einops import rearrange
# Assuming these files are in the project structure
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
logger = logging.getLogger(__name__)
def _load_file_from_url(url, model_dir='./', file_name=None):
"""Helper function to download files from a URL to a local directory."""
os.makedirs(model_dir, exist_ok=True)
filename = file_name or os.path.basename(urlparse(url).path)
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
logger.info(f'Downloading: "{url}" to {cached_file}')
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
return cached_file
class HDSpecialist:
"""
Implements the HD Specialist (Δ+) using the SeedVR infrastructure.
Manages model loading, inference, and memory on demand.
"""
def __init__(self, workspace_dir="deformes_workspace"):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.runner = None
self.workspace_dir = workspace_dir
self.is_initialized = False
logger.info("HD Specialist (SeedVR) initialized. Model will be loaded on demand.")
def _download_models(self):
"""Downloads the necessary checkpoints for SeedVR2."""
logger.info("Verifying and downloading SeedVR2 models...")
ckpt_dir = Path('./ckpts')
ckpt_dir.mkdir(exist_ok=True)
pretrain_model_urls = {
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
}
for key, url in pretrain_model_urls.items():
_load_file_from_url(url=url, model_dir='./ckpts/')
logger.info("SeedVR2 models downloaded successfully.")
def _initialize_runner(self, model_version: str):
"""Loads and configures the SeedVR model on demand based on the selected version."""
if self.runner is not None:
return
self._download_models()
logger.info(f"Initializing SeedVR2 {model_version} runner...")
if model_version == '3B':
config_path = os.path.join('./configs_3b', 'main.yaml')
checkpoint_path = './ckpts/seedvr2_ema_3b.pth'
elif model_version == '7B':
config_path = os.path.join('./configs_7b', 'main.yaml')
checkpoint_path = './ckpts/seedvr2_ema_7b.pth'
else:
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
config = load_config(config_path)
self.runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(self.runner.config, False)
self.runner.configure_dit_model(device=self.device, checkpoint=checkpoint_path)
self.runner.configure_vae_model()
if hasattr(self.runner.vae, "set_memory_limit"):
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
self.is_initialized = True
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
def _unload_runner(self):
"""Removes the runner from VRAM to free resources."""
if self.runner is not None:
del self.runner
self.runner = None
gc.collect()
torch.cuda.empty_cache()
self.is_initialized = False
logger.info("SeedVR2 runner unloaded from VRAM.")
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
model_version: str = '3B', steps: int = 50, seed: int = 666,
progress: gr.Progress = None) -> str:
"""Applies HD enhancement to a video using the SeedVR logic."""
try:
self._initialize_runner(model_version)
set_seed(seed, same_across_ranks=True)
# --- Adapted inference logic from SeedVR scripts ---
self.runner.config.diffusion.timesteps.sampling.steps = steps
self.runner.configure_diffusion()
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
res_h, res_w = video_tensor.shape[-2:]
video_transform = Compose([
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
])
cond_latents = [video_transform(video_tensor.to(self.device))]
input_videos = cond_latents
self.runner.dit.to("cpu")
self.runner.vae.to(self.device)
cond_latents = self.runner.vae_encode(cond_latents)
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.dit.to(self.device)
text_pos_embeds = torch.load('./ckpts/pos_emb.pt').to(self.device)
text_neg_embeds = torch.load('./ckpts/neg_emb.pt').to(self.device)
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
noises = [torch.randn_like(latent) for latent in cond_latents]
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = self.runner.inference(
noises=noises,
conditions=conditions,
dit_offload=True,
**text_embeds_dict,
)
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.vae.to(self.device)
samples = self.runner.vae_decode(video_tensors)
final_sample = samples[0]
input_video_sample = input_videos[0]
if final_sample.shape[1] < input_video_sample.shape[1]: # if generated frames are less
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
final_sample = wavelet_reconstruction(
rearrange(final_sample, "c t h w -> t c h w"),
rearrange(input_video_sample, "c t h w -> t c h w")
)
final_sample = rearrange(final_sample, "t c h w -> t h w c")
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
mediapy.write_video(output_video_path, final_sample_np, fps=24)
logger.info(f"HD Mastered video saved to: {output_video_path}")
return output_video_path
finally:
self._unload_runner()
# Singleton instance
hd_specialist_singleton = HDSpecialist() |