File size: 8,529 Bytes
f5c99ab
 
 
 
 
 
 
 
 
 
5137a03
b954723
5137a03
 
3dce029
5137a03
3dce029
5137a03
 
3dce029
 
 
 
f5c99ab
3dce029
f5c99ab
 
3dce029
f5c99ab
478560e
 
 
 
 
 
 
3dce029
 
5137a03
 
 
478560e
f5c99ab
478560e
 
 
 
f5c99ab
478560e
 
 
5137a03
 
f5c99ab
 
5137a03
3dce029
5137a03
3dce029
 
 
f5c99ab
478560e
3dce029
f5c99ab
 
3dce029
 
5137a03
f5c99ab
3dce029
f5c99ab
 
3dce029
 
 
478560e
f5c99ab
 
 
 
 
 
 
3dce029
 
 
 
 
f5c99ab
 
 
 
 
 
 
 
 
 
3dce029
 
 
 
5137a03
f5c99ab
3dce029
 
 
 
 
 
f5c99ab
3dce029
 
f5c99ab
3dce029
 
 
 
 
 
f5c99ab
3dce029
f5c99ab
 
 
 
3dce029
f5c99ab
3dce029
f5c99ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dce029
 
 
 
f5c99ab
5137a03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# hd_specialist.py
#
# Copyright (C) 2025 Carlos Rodrigues dos Santos
#
# This file implements the HD Specialist (Δ+), which uses the SeedVR model
# for video super-resolution. It's designed to be called by the ADUC orchestrator
# to perform the final HD mastering pass on a generated video. It manages the
# loading/unloading of the heavy SeedVR models to conserve VRAM and can switch
# between different model sizes (e.g., 3B and 7B).

import torch
import gradio as gr
import imageio
import os
import gc
import logging
import numpy as np
from PIL import Image
from tqdm import tqdm
import shlex
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
from omegaconf import OmegaConf
import mediapy
from einops import rearrange

# Assuming these files are in the project structure
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video

logger = logging.getLogger(__name__)

def _load_file_from_url(url, model_dir='./', file_name=None):
    """Helper function to download files from a URL to a local directory."""
    os.makedirs(model_dir, exist_ok=True)
    filename = file_name or os.path.basename(urlparse(url).path)
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        logger.info(f'Downloading: "{url}" to {cached_file}')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
    return cached_file

class HDSpecialist:
    """
    Implements the HD Specialist (Δ+) using the SeedVR infrastructure.
    Manages model loading, inference, and memory on demand.
    """
    def __init__(self, workspace_dir="deformes_workspace"):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.runner = None
        self.workspace_dir = workspace_dir
        self.is_initialized = False
        logger.info("HD Specialist (SeedVR) initialized. Model will be loaded on demand.")

    def _download_models(self):
        """Downloads the necessary checkpoints for SeedVR2."""
        logger.info("Verifying and downloading SeedVR2 models...")
        ckpt_dir = Path('./ckpts')
        ckpt_dir.mkdir(exist_ok=True)

        pretrain_model_urls = {
            'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
            'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
            'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
            'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
            'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
        }
        
        for key, url in pretrain_model_urls.items():
            _load_file_from_url(url=url, model_dir='./ckpts/')
            
        logger.info("SeedVR2 models downloaded successfully.")

    def _initialize_runner(self, model_version: str):
        """Loads and configures the SeedVR model on demand based on the selected version."""
        if self.runner is not None:
            return

        self._download_models()

        logger.info(f"Initializing SeedVR2 {model_version} runner...")
        if model_version == '3B':
            config_path = os.path.join('./configs_3b', 'main.yaml')
            checkpoint_path = './ckpts/seedvr2_ema_3b.pth'
        elif model_version == '7B':
            config_path = os.path.join('./configs_7b', 'main.yaml')
            checkpoint_path = './ckpts/seedvr2_ema_7b.pth'
        else:
            raise ValueError(f"Unsupported SeedVR model version: {model_version}")

        config = load_config(config_path)
        
        self.runner = VideoDiffusionInfer(config)
        OmegaConf.set_readonly(self.runner.config, False)
        
        self.runner.configure_dit_model(device=self.device, checkpoint=checkpoint_path)
        self.runner.configure_vae_model()
        
        if hasattr(self.runner.vae, "set_memory_limit"):
            self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
        
        self.is_initialized = True
        logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")

    def _unload_runner(self):
        """Removes the runner from VRAM to free resources."""
        if self.runner is not None:
            del self.runner
            self.runner = None
            gc.collect()
            torch.cuda.empty_cache()
            self.is_initialized = False
            logger.info("SeedVR2 runner unloaded from VRAM.")

    def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
                      model_version: str = '3B', steps: int = 50, seed: int = 666, 
                      progress: gr.Progress = None) -> str:
        """Applies HD enhancement to a video using the SeedVR logic."""
        try:
            self._initialize_runner(model_version)
            set_seed(seed, same_across_ranks=True)

            # --- Adapted inference logic from SeedVR scripts ---
            self.runner.config.diffusion.timesteps.sampling.steps = steps
            self.runner.configure_diffusion()

            video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
            res_h, res_w = video_tensor.shape[-2:]
            
            video_transform = Compose([
                NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
                Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
                DivisibleCrop((16, 16)),
                Normalize(0.5, 0.5),
                Rearrange("t c h w -> c t h w"),
            ])
            
            cond_latents = [video_transform(video_tensor.to(self.device))]
            input_videos = cond_latents

            self.runner.dit.to("cpu")
            self.runner.vae.to(self.device)
            cond_latents = self.runner.vae_encode(cond_latents)
            self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
            self.runner.dit.to(self.device)

            text_pos_embeds = torch.load('./ckpts/pos_emb.pt').to(self.device)
            text_neg_embeds = torch.load('./ckpts/neg_emb.pt').to(self.device)
            text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}

            noises = [torch.randn_like(latent) for latent in cond_latents]
            conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]

            with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
                video_tensors = self.runner.inference(
                    noises=noises,
                    conditions=conditions,
                    dit_offload=True,
                    **text_embeds_dict,
                )
            
            self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()

            self.runner.vae.to(self.device)
            samples = self.runner.vae_decode(video_tensors)
            
            final_sample = samples[0]
            input_video_sample = input_videos[0]

            if final_sample.shape[1] < input_video_sample.shape[1]: # if generated frames are less
                input_video_sample = input_video_sample[:, :final_sample.shape[1]]

            final_sample = wavelet_reconstruction(
                rearrange(final_sample, "c t h w -> t c h w"),
                rearrange(input_video_sample, "c t h w -> t c h w")
            )

            final_sample = rearrange(final_sample, "t c h w -> t h w c")
            final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
            final_sample_np = final_sample.to(torch.uint8).cpu().numpy()

            mediapy.write_video(output_video_path, final_sample_np, fps=24)
            logger.info(f"HD Mastered video saved to: {output_video_path}")
            return output_video_path

        finally:
            self._unload_runner()

# Singleton instance
hd_specialist_singleton = HDSpecialist()