Aduc_sdr / deformes4D_engine.py
euiia's picture
Update deformes4D_engine.py
431a182 verified
raw
history blame
13.6 kB
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
# Importações de especialistas, com o de áudio removido
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from upscaler_specialist import upscaler_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR: Câmera Ψ e Destilador Δ) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# --- MÉTODOS AUXILIARES ---
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
# --- NÚCLEO DA LÓGICA ADUC-SDR ---
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
num_transitions_to_generate = len(keyframes) - 1
TOTAL_STEPS = num_transitions_to_generate + 3 # Fragmentos + Renderização + HD
current_step = 0
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
if total_frames_brutos // FRAMES_PER_LATENT_CHUNK <= latents_a_podar + 1:
raise gr.Error("A combinação de duração e poda é muito agressiva.")
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
eco_latent_for_next_loop = None
dejavu_latent_for_next_loop = None
processed_latent_fragments = []
# --- ATO I: GERAÇÃO LATENTE (LOOP DE FRAGMENTOS) ---
for i in range(num_transitions_to_generate):
fragment_index = i + 1
current_step += 1
progress(current_step / TOTAL_STEPS, desc=f"Gerando Fragmento {fragment_index}/{num_transitions_to_generate}")
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
expected_height, expected_width = video_resolution, video_resolution
downscale_factor = 2 / 3
downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8)
downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8)
target_resolution_tuple = (downscaled_height, downscaled_width)
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
upscaled_latents = self.upscale_latents(latents_video)
refined_latents = self.refine_latents(upscaled_latents, motion_prompt=f"refining scene: {motion_prompt}")
processed_latent_fragments.append(refined_latents)
# --- ATO II: RENDERIZAÇÃO PRIMÁRIA (COM CORREÇÃO DE OOM) ---
base_name = f"movie_{int(time.time())}"
current_step += 1
progress(current_step / TOTAL_STEPS, desc="Renderizando vídeo (em lotes)...")
refined_silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_refined_silent.mp4")
with imageio.get_writer(refined_silent_video_path, fps=FPS, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
for i, latent_fragment in enumerate(processed_latent_fragments):
logger.info(f"Decodificando fragmento {i+1}/{len(processed_latent_fragments)} para pixels...")
pixel_tensor_fragment = self.latents_to_pixels(latent_fragment)
pixel_tensor_fragment = pixel_tensor_fragment.squeeze(0).permute(1, 2, 3, 0)
pixel_tensor_fragment = (pixel_tensor_fragment.clamp(-1, 1) + 1) / 2.0
video_np_fragment = (pixel_tensor_fragment.detach().cpu().float().numpy() * 255).astype(np.uint8)
for frame in video_np_fragment:
writer.append_data(frame)
del pixel_tensor_fragment, video_np_fragment
gc.collect()
torch.cuda.empty_cache()
logger.info(f"Vídeo base renderizado com sucesso em: {refined_silent_video_path}")
del processed_latent_fragments
gc.collect()
torch.cuda.empty_cache()
# --- ATO III: MASTERIZAÇÃO FINAL (APENAS HD) ---
current_step += 1
progress(current_step / TOTAL_STEPS, desc="Aprimoramento final (HD)...")
hq_silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_hq_silent.mp4")
try:
hd_specialist_singleton.process_video(
input_video_path=refined_silent_video_path,
output_video_path=hq_silent_video_path,
prompt=global_prompt
)
except Exception as e:
logger.error(f"Falha no aprimoramento HD: {e}. Usando vídeo de qualidade padrão.")
os.rename(refined_silent_video_path, hq_silent_video_path)
current_step += 1
progress(current_step / TOTAL_STEPS, desc="Finalizando...")
final_video_path = os.path.join(self.workspace_dir, f"{base_name}_FINAL.mp4")
os.rename(hq_silent_video_path, final_video_path)
logger.info(f"Processo concluído! Vídeo final (silencioso) salvo em: {final_video_path}")
yield {"final_path": final_video_path}
def refine_latents(self, latents: torch.Tensor,
fps: int = 24,
denoise_strength: float = 0.35,
refine_steps: int = 12,
motion_prompt: str = "refining video, improving details, cinematic quality") -> torch.Tensor:
"""
Aplica um passe de refinamento (denoise) em um tensor latente.
"""
logger.info(f"Refinando tensor latente com shape {latents.shape} para refinamento.")
_, _, num_latent_frames, latent_h, latent_w = latents.shape
video_scale_factor = getattr(self.vae.config, 'temporal_scale_factor', 8)
vae_scale_factor = getattr(self.vae.config, 'spatial_downscale_factor', 8)
pixel_height = latent_h * vae_scale_factor
pixel_width = latent_w * vae_scale_factor
pixel_frames = (num_latent_frames - 1) * video_scale_factor
refined_latents_tensor, _ = self.ltx_manager.refine_latents(
latents,
height=pixel_height,
width=pixel_width,
video_total_frames=pixel_frames,
video_fps=fps,
motion_prompt=motion_prompt,
current_fragment_index=int(time.time()),
denoise_strength=denoise_strength,
refine_steps=refine_steps
)
logger.info(f"Retornando tensor latente refinado com shape: {refined_latents_tensor.shape}")
return refined_latents_tensor
def upscale_latents(self, latents: torch.Tensor) -> torch.Tensor:
"""Interface para o UpscalerSpecialist."""
logger.info(f"Realizando upscale em tensor latente com shape {latents.shape}.")
return upscaler_specialist_singleton.upscale(latents)
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
kwargs = {
**ltx_params, 'width': target_resolution[1], 'height': target_resolution[0],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
return self.ltx_manager.generate_latent_fragment(**kwargs)
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized