|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import time |
|
|
import imageio |
|
|
import numpy as np |
|
|
import torch |
|
|
import logging |
|
|
from PIL import Image, ImageOps |
|
|
from dataclasses import dataclass |
|
|
import gradio as gr |
|
|
import subprocess |
|
|
import gc |
|
|
|
|
|
|
|
|
from audio_specialist import audio_specialist_singleton |
|
|
from ltx_manager_helpers import ltx_manager_singleton |
|
|
from gemini_helpers import gemini_singleton |
|
|
from upscaler_specialist import upscaler_specialist_singleton |
|
|
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder |
|
|
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
|
class LatentConditioningItem: |
|
|
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ).""" |
|
|
latent_tensor: torch.Tensor |
|
|
media_frame_number: int |
|
|
conditioning_strength: float |
|
|
|
|
|
class Deformes4DEngine: |
|
|
""" |
|
|
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR. |
|
|
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo. |
|
|
""" |
|
|
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"): |
|
|
self.ltx_manager = ltx_manager |
|
|
self.workspace_dir = workspace_dir |
|
|
self._vae = None |
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
logger.info("Especialista Deformes4D (Executor ADUC-SDR: Câmera Ψ e Destilador Δ) inicializado.") |
|
|
|
|
|
@property |
|
|
def vae(self): |
|
|
if self._vae is None: |
|
|
self._vae = self.ltx_manager.workers[0].pipeline.vae |
|
|
self._vae.to(self.device); self._vae.eval() |
|
|
return self._vae |
|
|
|
|
|
|
|
|
def save_latent_tensor(self, tensor: torch.Tensor, path: str): |
|
|
torch.save(tensor.cpu(), path) |
|
|
|
|
|
def load_latent_tensor(self, path: str) -> torch.Tensor: |
|
|
return torch.load(path, map_location=self.device) |
|
|
|
|
|
@torch.no_grad() |
|
|
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor: |
|
|
tensor = tensor.to(self.device, dtype=self.vae.dtype) |
|
|
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True) |
|
|
|
|
|
@torch.no_grad() |
|
|
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor: |
|
|
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype) |
|
|
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype) |
|
|
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True) |
|
|
|
|
|
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24): |
|
|
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return |
|
|
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0) |
|
|
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0 |
|
|
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8) |
|
|
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer: |
|
|
for frame in video_np: writer.append_data(frame) |
|
|
|
|
|
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image: |
|
|
if image.size != target_resolution: |
|
|
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS) |
|
|
return image |
|
|
|
|
|
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor: |
|
|
image_np = np.array(pil_image).astype(np.float32) / 255.0 |
|
|
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2) |
|
|
tensor = (tensor * 2.0) - 1.0 |
|
|
return self.pixels_to_latents(tensor) |
|
|
|
|
|
def _get_video_frame_count(self, video_path: str) -> int | None: |
|
|
if not os.path.exists(video_path): return None |
|
|
cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-count_frames', |
|
|
'-show_entries', 'stream=nb_read_frames', '-of', 'default=nokey=1:noprint_wrappers=1', video_path] |
|
|
try: |
|
|
result = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8') |
|
|
return int(result.stdout.strip()) |
|
|
except Exception: return None |
|
|
|
|
|
def _trim_last_frame_ffmpeg(self, input_path: str, output_path: str) -> bool: |
|
|
frame_count = self._get_video_frame_count(input_path) |
|
|
if frame_count is None or frame_count < 2: |
|
|
if os.path.exists(input_path): os.rename(input_path, output_path) |
|
|
return True |
|
|
vf_filter = f"select='lt(n,{frame_count - 1})',setpts=PTS-STARTPTS" |
|
|
cmd_list = ['ffmpeg', '-y', '-i', input_path, '-vf', vf_filter, '-an', output_path] |
|
|
try: |
|
|
subprocess.run(cmd_list, check=True, capture_output=True, text=True, encoding='utf-8') |
|
|
return True |
|
|
except subprocess.CalledProcessError: return False |
|
|
|
|
|
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str: |
|
|
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.") |
|
|
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt") |
|
|
with open(list_file_path, 'w', encoding='utf-8') as f: |
|
|
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n") |
|
|
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path] |
|
|
try: |
|
|
subprocess.run(cmd_list, check=True, capture_output=True, text=True) |
|
|
except subprocess.CalledProcessError as e: |
|
|
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}") |
|
|
return output_path |
|
|
|
|
|
|
|
|
|
|
|
def _generate_video_and_audio(self, silent_video_path: str, audio_prompt: str, base_name: str) -> str: |
|
|
try: |
|
|
result = subprocess.run( |
|
|
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path], |
|
|
capture_output=True, text=True, check=True) |
|
|
duration = float(result.stdout.strip()) |
|
|
except Exception: |
|
|
frame_count = self._get_video_frame_count(silent_video_path) |
|
|
duration = (frame_count / 24.0) if frame_count else 0 |
|
|
|
|
|
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video( |
|
|
video_path=silent_video_path, prompt=audio_prompt, |
|
|
duration_seconds=duration) |
|
|
|
|
|
return video_with_audio_path |
|
|
|
|
|
|
|
|
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list, |
|
|
seconds_per_fragment: float, trim_percent: int, |
|
|
handler_strength: float, destination_convergence_strength: float, |
|
|
video_resolution: int, use_continuity_director: bool, |
|
|
progress: gr.Progress = gr.Progress()): |
|
|
|
|
|
FPS = 24 |
|
|
FRAMES_PER_LATENT_CHUNK = 8 |
|
|
ECO_LATENT_CHUNKS = 2 |
|
|
|
|
|
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK) |
|
|
total_latents_brutos = total_frames_brutos // FRAMES_PER_LATENT_CHUNK |
|
|
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK) |
|
|
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK |
|
|
|
|
|
if total_latents_brutos <= latents_a_podar + 1: |
|
|
raise gr.Error(f"A combinação de duração e poda é muito agressiva.") |
|
|
|
|
|
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0 |
|
|
DESTINATION_FRAME_TARGET = total_frames_brutos - 1 |
|
|
|
|
|
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20} |
|
|
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes] |
|
|
story_history = "" |
|
|
|
|
|
|
|
|
eco_latent_for_next_loop = None |
|
|
dejavu_latent_for_next_loop = None |
|
|
|
|
|
num_transitions_to_generate = len(keyframe_paths) - 1 |
|
|
low_res_latent_fragments = [] |
|
|
|
|
|
for i in range(num_transitions_to_generate): |
|
|
fragment_index = i + 1 |
|
|
progress(i / (num_transitions_to_generate + 2), desc=f"Gerando Latentes do Fragmento {fragment_index}") |
|
|
|
|
|
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i] |
|
|
start_keyframe_path = keyframe_paths[i] |
|
|
destination_keyframe_path = keyframe_paths[i + 1] |
|
|
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final." |
|
|
decision = gemini_singleton.get_cinematic_decision( |
|
|
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, |
|
|
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt) |
|
|
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"] |
|
|
story_history += f"\n- Ato {fragment_index}: {motion_prompt}" |
|
|
|
|
|
|
|
|
expected_height, expected_width = 768, 1152 |
|
|
downscale_factor = 2 / 3 |
|
|
downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8) |
|
|
downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8) |
|
|
target_resolution_tuple = (downscaled_height, downscaled_width) |
|
|
final_resolution_tuple = (expected_height, expected_width) |
|
|
|
|
|
|
|
|
|
|
|
conditioning_items = [] |
|
|
if eco_latent_for_next_loop is None: |
|
|
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0)) |
|
|
else: |
|
|
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0)) |
|
|
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength)) |
|
|
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength)) |
|
|
|
|
|
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt} |
|
|
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos) |
|
|
|
|
|
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone() |
|
|
eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone() |
|
|
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone() |
|
|
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone() |
|
|
latents_video = latents_video[:, :, 1:, :, :] |
|
|
|
|
|
if transition_type == "cut": |
|
|
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None |
|
|
|
|
|
|
|
|
hig_res_latent_fragments = upscaler_specialist_singleton.upscale(latents_video) |
|
|
|
|
|
low_res_latent_fragments.append(hig_res_latent_fragments) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
progress((num_transitions_to_generate) / (num_transitions_to_generate + 2), desc="Concatenando latentes...") |
|
|
tensors_para_concatenar = [] |
|
|
target_device = self.device |
|
|
for idx, tensor_frag in enumerate(low_res_latent_fragments): |
|
|
tensor_on_target_device = tensor_frag.to(target_device) |
|
|
if idx < len(low_res_latent_fragments) - 1: |
|
|
tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :]) |
|
|
else: |
|
|
tensors_para_concatenar.append(tensor_on_target_device) |
|
|
|
|
|
final_concatenated_latents = torch.cat(tensors_para_concatenar, dim=2) |
|
|
|
|
|
progress((num_transitions_to_generate + 1) / (num_transitions_to_generate + 2), desc="Pós-produção (Upscale e Refinamento)...") |
|
|
base_name = f"final_movie_hq_{int(time.time())}" |
|
|
|
|
|
|
|
|
|
|
|
high_quality_video_path = self._render_and_post_process( |
|
|
final_concatenated_latents, |
|
|
base_name=base_name, |
|
|
expected_height=720, |
|
|
expected_width=720, |
|
|
fps=24 |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yield {"final_path": high_quality_video_path} |
|
|
|
|
|
|
|
|
def _render_and_post_process(self, final_concatenated_latents: torch.Tensor, |
|
|
base_name: str, expected_height: int, expected_width: int, fps: int = 24) -> str: |
|
|
logger.info("Iniciando pós-processamento: upscale + refinamento...") |
|
|
|
|
|
|
|
|
upscaled_latents = upscaler_specialist_singleton.upscale(final_concatenated_latents) |
|
|
logger.info(f"Upscale concluído: shape {list(upscaled_latents.shape)}") |
|
|
|
|
|
|
|
|
_, _, _, h, w = upscaled_latents.shape |
|
|
refined_latents, _ = ltx_manager_singleton.refine_latents( |
|
|
upscaled_latents, |
|
|
height=h, |
|
|
width=w, |
|
|
denoise_strength=0.35, |
|
|
refine_steps=12 |
|
|
) |
|
|
logger.info("Refinamento concluído.") |
|
|
|
|
|
|
|
|
pixel_tensor = self.latents_to_pixels(refined_latents) |
|
|
|
|
|
|
|
|
video_path = os.path.join(self.workspace_dir, f"{base_name}_HQ.mp4") |
|
|
self.save_video_from_tensor(pixel_tensor, video_path, fps=fps) |
|
|
logger.info(f"Vídeo final salvo em: {video_path}") |
|
|
|
|
|
return video_path |
|
|
|
|
|
|
|
|
|
|
|
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate): |
|
|
kwargs = { |
|
|
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], |
|
|
'video_total_frames': total_frames_to_generate, 'video_fps': 24, |
|
|
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items |
|
|
} |
|
|
return self.ltx_manager.generate_latent_fragment(**kwargs) |
|
|
|
|
|
def _quantize_to_multiple(self, n, m): |
|
|
if m == 0: return n |
|
|
quantized = int(round(n / m) * m) |
|
|
return m if n > 0 and quantized == 0 else quantized |