Aduc_sdr / deformes4D_engine.py
euiia's picture
Update deformes4D_engine.py
00a457f verified
raw
history blame
15.4 kB
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
from audio_specialist import audio_specialist_singleton
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from upscaler_specialist import upscaler_specialist_singleton
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR: Câmera Ψ e Destilador Δ) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# MÉTODOS AUXILIARES
def save_latent_tensor(self, tensor: torch.Tensor, path: str):
torch.save(tensor.cpu(), path)
def load_latent_tensor(self, path: str) -> torch.Tensor:
return torch.load(path, map_location=self.device)
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
for frame in video_np: writer.append_data(frame)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
def _get_video_frame_count(self, video_path: str) -> int | None:
if not os.path.exists(video_path): return None
cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-count_frames',
'-show_entries', 'stream=nb_read_frames', '-of', 'default=nokey=1:noprint_wrappers=1', video_path]
try:
result = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8')
return int(result.stdout.strip())
except Exception: return None
def _trim_last_frame_ffmpeg(self, input_path: str, output_path: str) -> bool:
frame_count = self._get_video_frame_count(input_path)
if frame_count is None or frame_count < 2:
if os.path.exists(input_path): os.rename(input_path, output_path)
return True
vf_filter = f"select='lt(n,{frame_count - 1})',setpts=PTS-STARTPTS"
cmd_list = ['ffmpeg', '-y', '-i', input_path, '-vf', vf_filter, '-an', output_path]
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True, encoding='utf-8')
return True
except subprocess.CalledProcessError: return False
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
with open(list_file_path, 'w', encoding='utf-8') as f:
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
return output_path
def _generate_video_and_audio(self, silent_video_path: str, audio_prompt: str, base_name: str) -> str:
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
duration = float(result.stdout.strip())
except Exception:
frame_count = self._get_video_frame_count(silent_video_path)
duration = (frame_count / 24.0) if frame_count else 0
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=duration)
return video_with_audio_path
# NÚCLEO DA LÓGICA ADUC-SDR
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
total_latents_brutos = total_frames_brutos // FRAMES_PER_LATENT_CHUNK
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
if total_latents_brutos <= latents_a_podar + 1:
raise gr.Error(f"A combinação de duração e poda é muito agressiva.")
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
eco_latent_for_next_loop = None
dejavu_latent_for_next_loop = None
num_transitions_to_generate = len(keyframe_paths) - 1
low_res_latent_fragments = []
for i in range(num_transitions_to_generate):
fragment_index = i + 1
progress(i / (num_transitions_to_generate + 2), desc=f"Gerando Latentes do Fragmento {fragment_index}")
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8)
downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8)
target_resolution_tuple = (downscaled_height, downscaled_width)
final_resolution_tuple = (expected_height, expected_width)
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
hig_res_latent_fragments = upscaler_specialist_singleton.upscale(latents_video)
low_res_latent_fragments.append(hig_res_latent_fragments)
progress((num_transitions_to_generate) / (num_transitions_to_generate + 2), desc="Concatenando latentes...")
tensors_para_concatenar = []
target_device = self.device
for idx, tensor_frag in enumerate(low_res_latent_fragments):
tensor_on_target_device = tensor_frag.to(target_device)
if idx < len(low_res_latent_fragments) - 1:
tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :])
else:
tensors_para_concatenar.append(tensor_on_target_device)
final_concatenated_latents = torch.cat(tensors_para_concatenar, dim=2)
progress((num_transitions_to_generate + 1) / (num_transitions_to_generate + 2), desc="Pós-produção (Upscale e Refinamento)...")
base_name = f"final_movie_hq_{int(time.time())}"
# Pós-produção: Upscale + Refine
high_quality_video_path = self._render_and_post_process(
final_concatenated_latents,
base_name=base_name,
expected_height=720,
expected_width=720,
fps=24
)
#progress((num_transitions_to_generate + 1.5) / (num_transitions_to_generate + 2), desc="Gerando paisagem sonora...")
#video_with_audio_path = self._generate_video_and_audio(
# silent_video_path=silent_video_path,
# audio_prompt=global_prompt,
# base_name=base_name
#)
yield {"final_path": high_quality_video_path}
def _render_and_post_process(self, final_concatenated_latents: torch.Tensor,
base_name: str, expected_height: int, expected_width: int, fps: int = 24) -> str:
logger.info("Iniciando pós-processamento: upscale + refinamento...")
# --- 1. Upscale ---
upscaled_latents = upscaler_specialist_singleton.upscale(final_concatenated_latents)
logger.info(f"Upscale concluído: shape {list(upscaled_latents.shape)}")
# --- 2. Refinamento ---
_, _, _, h, w = upscaled_latents.shape
refined_latents, _ = ltx_manager_singleton.refine_latents(
upscaled_latents,
height=h,
width=w,
denoise_strength=0.35, # levemente menor pra preservar nitidez
refine_steps=12 # mais iterações pra polir detalhes
)
logger.info("Refinamento concluído.")
# --- 3. Decodificação ---
pixel_tensor = self.latents_to_pixels(refined_latents)
# --- 4. Render final ---
video_path = os.path.join(self.workspace_dir, f"{base_name}_HQ.mp4")
self.save_video_from_tensor(pixel_tensor, video_path, fps=fps)
logger.info(f"Vídeo final salvo em: {video_path}")
return video_path
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
kwargs = {
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
return self.ltx_manager.generate_latent_fragment(**kwargs)
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized