Aduc_sdr / deformes4D_engine.py
euiia's picture
Update deformes4D_engine.py
f06d030 verified
raw
history blame
15.8 kB
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from upscaler_specialist import upscaler_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
from audio_specialist import audio_specialist_singleton
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# --- MÉTODOS AUXILIARES ---
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
for frame in video_np: writer.append_data(frame)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
# --- NÚCLEO DA LÓGICA ADUC-SDR ---
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20, "image_cond_noise_scale": 0.00}
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
story_history = ""
target_resolution_tuple = (video_resolution, video_resolution)
eco_latent_for_next_loop = None
dejavu_latent_for_next_loop = None
# [CORREÇÃO 1] Inicialização correta da lista
latent_fragments = []
if len(keyframe_paths) < 2:
raise gr.Error(f"A geração requer no mínimo 2 keyframes. Você forneceu {len(keyframe_paths)}.")
num_transitions_to_generate = len(keyframe_paths) - 1
for i in range(num_transitions_to_generate):
fragment_index = i + 1
progress(i / num_transitions_to_generate, desc=f"Produzindo Transição {fragment_index}/{num_transitions_to_generate}")
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt
)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
if transition_type == "cut":
eco_latent_for_next_loop = None
dejavu_latent_for_next_loop = None
if use_upscaler:
latents_video = self.upscale_latents(latents_video)
latent_fragments.append(latents_video)
logger.info("--- CONCATENANDO nem TODOS OS FRAGMENTOS LATENTES ---")
tensors_para_concatenar = []
for idx, tensor_frag in enumerate(latent_fragments):
# Move cada tensor para o dispositivo de destino antes de adicioná-lo à lista.
target_device = self.device
tensor_on_target_device = tensor_frag.to(target_device)
if idx < len(latent_fragments) - 1:
tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :])
else:
tensors_para_concatenar.append(tensor_on_target_device)
processed_latents = torch.cat(tensors_para_concatenar, dim=2)
logger.info(f"Concatenação concluída. Shape final do tensor latente: {final_concatenated_latents.shape}")
# [CORREÇÃO 2] Referência correta da variável no log
logger.info(f"Concatenação concluída. Shape final do tensor latente: {processed_latents.shape}")
if use_refiner:
processed_latents = self.refine_latents(
processed_latents,
motion_prompt="",
guidance_scale=1.0
)
# --- [INÍCIO DA SEÇÃO CORRIGIDA PARA EXECUÇÃO] ---
base_name = f"movie_{int(time.time())}"
# Define um caminho único para o vídeo que sai desta etapa, antes do HD.
intermediate_video_path = os.path.join(self.workspace_dir, f"{base_name}_intermediate.mp4")
if use_audio:
# A função de áudio agora salva o vídeo com áudio no caminho intermediário
intermediate_video_path = self._generate_video_and_audio_from_latents(processed_latents, global_prompt, base_name)
else:
logger.info("Etapa de sonoplastia desativada. Renderizando vídeo silencioso.")
pixel_tensor = self.latents_to_pixels(processed_latents)
self.save_video_from_tensor(pixel_tensor, intermediate_video_path, fps=24)
del pixel_tensor
del processed_latents; gc.collect(); torch.cuda.empty_cache()
# Define o caminho final
final_video_path = os.path.join(self.workspace_dir, f"{base_name}_FINAL.mp4")
if use_hd:
progress(0.9, desc="Masterização Final (HD)...")
try:
# O HD agora lê o intermediate_video_path e salva no final_video_path
hd_specialist_singleton.process_video(
input_video_path=intermediate_video_path,
output_video_path=final_video_path,
prompt=" "
)
except Exception as e:
logger.error(f"Falha na masterização HD: {e}. Usando vídeo de qualidade padrão.")
os.rename(intermediate_video_path, final_video_path)
else:
logger.info("Etapa de edição HD desativada.")
# Se o HD não for usado, o vídeo intermediário se torna o final.
os.rename(intermediate_video_path, final_video_path)
# --- [FIM DA SEÇÃO CORRIGIDA] ---
logger.info(f"Processo concluído! Vídeo final salvo em: {final_video_path}")
yield {"final_path": final_video_path}
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
# Esta função foi movida para cima, mas sua lógica interna permanece a mesma.
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent_for_audio.mp4")
pixel_tensor = self.latents_to_pixels(latent_tensor)
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
del pixel_tensor; gc.collect()
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
frag_duration = float(result.stdout.strip())
except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
logger.warning(f"ffprobe falhou. Calculando duração manualmente.")
num_pixel_frames = latent_tensor.shape[2] * 8
frag_duration = num_pixel_frames / 24.0
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=frag_duration)
if os.path.exists(silent_video_path):
os.remove(silent_video_path)
return video_with_audio_path
def refine_latents(self, latents: torch.Tensor, fps: int = 24, denoise_strength: float = 0.35, refine_steps: int = 12, motion_prompt: str = "...", **kwargs) -> torch.Tensor:
logger.info(f"Refinando tensor latente com shape {latents.shape}.")
_, _, num_latent_frames, latent_h, latent_w = latents.shape
video_scale_factor = getattr(self.vae.config, 'temporal_scale_factor', 8)
vae_scale_factor = getattr(self.vae.config, 'spatial_downscale_factor', 8)
pixel_height = latent_h * vae_scale_factor
pixel_width = latent_w * vae_scale_factor
pixel_frames = (num_latent_frames - 1) * video_scale_factor
final_ltx_params = {
"height": pixel_height, "width": pixel_width, "video_total_frames": pixel_frames,
"video_fps": fps, "motion_prompt": motion_prompt, "current_fragment_index": int(time.time()),
"denoise_strength": denoise_strength, "refine_steps": refine_steps,
"guidance_scale": kwargs.get('guidance_scale', 2.0)
}
refined_latents_tensor, _ = self.ltx_manager.refine_latents(latents, **final_ltx_params)
logger.info(f"Retornando tensor latente refinado com shape: {refined_latents_tensor.shape}")
return refined_latents_tensor
def upscale_latents(self, latents: torch.Tensor) -> torch.Tensor:
logger.info(f"Realizando upscale em tensor latente com shape {latents.shape}.")
return upscaler_specialist_singleton.upscale(latents)
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
final_ltx_params = {
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
gc.collect()
torch.cuda.empty_cache()
return new_full_latents
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized