|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import time |
|
|
import imageio |
|
|
import numpy as np |
|
|
import torch |
|
|
import logging |
|
|
from PIL import Image, ImageOps |
|
|
from dataclasses import dataclass |
|
|
import gradio as gr |
|
|
import subprocess |
|
|
import random |
|
|
import gc |
|
|
|
|
|
from ltx_manager_helpers import ltx_manager_singleton |
|
|
from gemini_helpers import gemini_singleton |
|
|
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
|
class LatentConditioningItem: |
|
|
latent_tensor: torch.Tensor |
|
|
media_frame_number: int |
|
|
conditioning_strength: float |
|
|
|
|
|
class Deformes4DEngine: |
|
|
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"): |
|
|
self.ltx_manager = ltx_manager |
|
|
self.workspace_dir = workspace_dir |
|
|
self._vae = None |
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
logger.info("Especialista Deformes4D (SDR Executor) inicializado.") |
|
|
|
|
|
@property |
|
|
def vae(self): |
|
|
if self._vae is None: |
|
|
self._vae = self.ltx_manager.workers[0].pipeline.vae |
|
|
self._vae.to(self.device); self._vae.eval() |
|
|
return self._vae |
|
|
|
|
|
|
|
|
def save_latent_tensor(self, tensor: torch.Tensor, path: str): |
|
|
torch.save(tensor.cpu(), path) |
|
|
logger.info(f"Tensor latente salvo em: {path}") |
|
|
|
|
|
def load_latent_tensor(self, path: str) -> torch.Tensor: |
|
|
tensor = torch.load(path, map_location=self.device) |
|
|
logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}") |
|
|
return tensor |
|
|
|
|
|
@torch.no_grad() |
|
|
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor: |
|
|
tensor = tensor.to(self.device, dtype=self.vae.dtype) |
|
|
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True) |
|
|
|
|
|
@torch.no_grad() |
|
|
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor: |
|
|
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype) |
|
|
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype) |
|
|
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True) |
|
|
|
|
|
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24): |
|
|
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: |
|
|
logger.warning("Tentativa de salvar um tensor de vídeo inválido. Abortando.") |
|
|
return |
|
|
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0) |
|
|
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0 |
|
|
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8) |
|
|
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer: |
|
|
for frame in video_np: writer.append_data(frame) |
|
|
logger.info(f"Vídeo salvo em: {path}") |
|
|
|
|
|
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image: |
|
|
if image.size != target_resolution: |
|
|
logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.") |
|
|
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS) |
|
|
return image |
|
|
|
|
|
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor: |
|
|
image_np = np.array(pil_image).astype(np.float32) / 255.0 |
|
|
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2) |
|
|
tensor = (tensor * 2.0) - 1.0 |
|
|
return self.pixels_to_latents(tensor) |
|
|
|
|
|
def _generate_video_from_latents(self, latent_tensor, base_name): |
|
|
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4") |
|
|
pixel_tensor = self.latents_to_pixels(latent_tensor) |
|
|
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24) |
|
|
del pixel_tensor; gc.collect() |
|
|
return silent_video_path |
|
|
|
|
|
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate): |
|
|
final_ltx_params = {**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], 'video_total_frames': total_frames_to_generate, 'video_fps': 24, 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items} |
|
|
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params) |
|
|
return new_full_latents |
|
|
|
|
|
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str: |
|
|
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.") |
|
|
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt") |
|
|
with open(list_file_path, 'w', encoding='utf-8') as f: |
|
|
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n") |
|
|
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path] |
|
|
logger.info("Executando concatenação FFmpeg...") |
|
|
try: |
|
|
subprocess.run(cmd_list, check=True, capture_output=True, text=True) |
|
|
except subprocess.CalledProcessError as e: |
|
|
logger.error(f"Erro no FFmpeg: {e.stderr}") |
|
|
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}") |
|
|
return output_path |
|
|
|
|
|
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list, |
|
|
seconds_per_fragment: float, trim_percent: int, |
|
|
handler_strength: float, destination_convergence_strength: float, |
|
|
video_resolution: int, use_continuity_director: bool, |
|
|
progress: gr.Progress = gr.Progress()): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_chunks_gerados = max(5, int(round(seconds_per_fragment * 24 / 8))) |
|
|
|
|
|
|
|
|
trim_chunks = max(4, int(round(total_chunks_gerados * (trim_percent / 100)))) |
|
|
|
|
|
|
|
|
if trim_chunks >= total_chunks_gerados: |
|
|
trim_chunks = total_chunks_gerados - 1 |
|
|
logger.warning(f"A poda ({trim_percent}%) era muito grande. Ajustada para {trim_chunks} chunks para deixar 1 chunk de vídeo.") |
|
|
|
|
|
|
|
|
VIDEO_CHUNK_COUNT = total_chunks_gerados - trim_chunks |
|
|
|
|
|
HANDLER_CHUNK_INDICES = slice(total_chunks_gerados - 2, total_chunks_gerados) |
|
|
ECO_CHUNK_INDICES = slice(total_chunks_gerados - 4, total_chunks_gerados - 2) |
|
|
|
|
|
HANDLER_FRAME_TARGET = (trim_chunks - 2) * 8 |
|
|
FRAMES_TO_GENERATE = (total_chunks_gerados - 1) * 8 + 1 |
|
|
DESTINATION_FRAME_TARGET = FRAMES_TO_GENERATE - 1 |
|
|
|
|
|
logger.info("="*60) |
|
|
logger.info("MODO DE GERAÇÃO: Estratégia de Cauda Longa Dinâmica") |
|
|
logger.info(f" - Duração Solicitada: {seconds_per_fragment}s -> Geração Bruta: {total_chunks_gerados} chunks") |
|
|
logger.info(f" - Poda Solicitada: {trim_percent}% -> Chunks de Poda (Cauda): {trim_chunks}") |
|
|
logger.info(f" - Clipe Final por Fragmento: {VIDEO_CHUNK_COUNT} chunks") |
|
|
logger.info(f" - Guia de Eco (Memória): Chunks {ECO_CHUNK_INDICES.start}-{ECO_CHUNK_INDICES.stop-1}") |
|
|
logger.info(f" - Guia de Handler (Evolução): Chunks {HANDLER_CHUNK_INDICES.start}-{HANDLER_CHUNK_INDICES.stop-1}") |
|
|
logger.info(f" - PONTO DE APLICAÇÃO DO HANDLER (DINÂMICO): Frame {HANDLER_FRAME_TARGET}") |
|
|
logger.info("="*60) |
|
|
|
|
|
base_ltx_params = {"guidance_scale": 1.0, "stg_scale": 0.0, "rescaling_scale": 0.15, "num_inference_steps": 20} |
|
|
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes] |
|
|
video_clips_paths, story_history = [], "" |
|
|
target_resolution_tuple = (video_resolution, video_resolution) |
|
|
|
|
|
eco_latent_for_next_loop = None |
|
|
handler_latent_for_next_loop = None |
|
|
|
|
|
if len(keyframe_paths) < 3: |
|
|
raise gr.Error(f"O modelo de geração requer no mínimo 3 keyframes (Passado, Presente, Futuro). Você forneceu {len(keyframe_paths)}.") |
|
|
|
|
|
num_transitions_to_generate = len(keyframe_paths) - 2 |
|
|
|
|
|
for i in range(num_transitions_to_generate): |
|
|
start_keyframe_index = i + 1 |
|
|
|
|
|
logger.info(f"--- INICIANDO FRAGMENTO {i+1}/{num_transitions_to_generate} ---") |
|
|
progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}") |
|
|
|
|
|
past_keyframe_path = keyframe_paths[start_keyframe_index - 1] |
|
|
start_keyframe_path = keyframe_paths[start_keyframe_index] |
|
|
destination_keyframe_path = keyframe_paths[start_keyframe_index + 1] |
|
|
future_story_prompt = storyboard[start_keyframe_index + 1] if (start_keyframe_index + 1) < len(storyboard) else "A cena final." |
|
|
|
|
|
decision = gemini_singleton.get_cinematic_decision( |
|
|
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, |
|
|
storyboard[start_keyframe_index - 1], storyboard[start_keyframe_index], future_story_prompt |
|
|
) |
|
|
_, motion_prompt = decision["transition_type"], decision["motion_prompt"] |
|
|
story_history += f"\n- Ato {i+1}: {motion_prompt}" |
|
|
|
|
|
conditioning_items = [] |
|
|
logger.info(" [0. PREPARAÇÃO] Montando itens de condicionamento...") |
|
|
|
|
|
if i == 0: |
|
|
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0)) |
|
|
else: |
|
|
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0)) |
|
|
conditioning_items.append(LatentConditioningItem(handler_latent_for_next_loop, HANDLER_FRAME_TARGET, handler_strength)) |
|
|
|
|
|
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength)) |
|
|
|
|
|
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt} |
|
|
new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, FRAMES_TO_GENERATE) |
|
|
logger.info(f" [1. GERAÇÃO] Tensor latente bruto gerado com shape: {new_full_latents.shape}.") |
|
|
|
|
|
eco_latent_for_next_loop = new_full_latents[:, :, ECO_CHUNK_INDICES, :, :].clone() |
|
|
handler_latent_for_next_loop = new_full_latents[:, :, HANDLER_CHUNK_INDICES, :, :].clone() |
|
|
logger.info(f" [GUIAS] Guias para a próxima iteração extraídas. Eco shape: {eco_latent_for_next_loop.shape}, Handler shape: {handler_latent_for_next_loop.shape}.") |
|
|
|
|
|
latents_for_video = new_full_latents[:, :, :VIDEO_CHUNK_COUNT, :, :] |
|
|
logger.info(f" [2. EDIÇÃO] Tensor final para vídeo extraído com {latents_for_video.shape[2]} chunks.") |
|
|
|
|
|
base_name = f"fragment_{i}_{int(time.time())}" |
|
|
video_path = self._generate_video_from_latents(latents_for_video, base_name) |
|
|
video_clips_paths.append(video_path) |
|
|
yield {"fragment_path": video_path} |
|
|
|
|
|
final_movie_path = os.path.join(self.workspace_dir, f"final_movie_silent_{int(time.time())}.mp4") |
|
|
self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path) |
|
|
|
|
|
logger.info(f"Filme completo salvo em: {final_movie_path}") |
|
|
yield {"final_path": final_movie_path} |
|
|
|
|
|
def _quantize_to_multiple(self, n, m): |
|
|
if m == 0: return n |
|
|
quantized = int(round(n / m) * m) |
|
|
return m if n > 0 and quantized == 0 else quantized |