|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import gc |
|
|
import os |
|
|
import yaml |
|
|
import logging |
|
|
import huggingface_hub |
|
|
import time |
|
|
import threading |
|
|
import json |
|
|
|
|
|
from optimization import optimize_ltx_worker, can_optimize_fp8 |
|
|
from hardware_manager import hardware_manager |
|
|
from inference import create_ltx_video_pipeline, calculate_padding |
|
|
from ltx_video.pipelines.pipeline_ltx_video import LatentConditioningItem |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class LtxWorker: |
|
|
""" |
|
|
Representa uma única instância da pipeline LTX-Video em um dispositivo específico. |
|
|
Gerencia o carregamento do modelo para a CPU e a movimentação de/para a GPU. |
|
|
""" |
|
|
def __init__(self, device_id, ltx_config_file): |
|
|
self.cpu_device = torch.device('cpu') |
|
|
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') |
|
|
logger.info(f"LTX Worker ({self.device}): Inicializando com config '{ltx_config_file}'...") |
|
|
|
|
|
with open(ltx_config_file, "r") as file: |
|
|
self.config = yaml.safe_load(file) |
|
|
|
|
|
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "") |
|
|
|
|
|
models_dir = "downloaded_models_gradio" |
|
|
|
|
|
logger.info(f"LTX Worker ({self.device}): Carregando modelo para a CPU...") |
|
|
model_path = os.path.join(models_dir, self.config["checkpoint_path"]) |
|
|
if not os.path.exists(model_path): |
|
|
model_path = huggingface_hub.hf_hub_download( |
|
|
repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"], |
|
|
local_dir=models_dir, local_dir_use_symlinks=False |
|
|
) |
|
|
|
|
|
self.pipeline = create_ltx_video_pipeline( |
|
|
ckpt_path=model_path, precision=self.config["precision"], |
|
|
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], |
|
|
sampler=self.config["sampler"], device='cpu' |
|
|
) |
|
|
logger.info(f"LTX Worker ({self.device}): Modelo pronto na CPU. É um modelo destilado? {self.is_distilled}") |
|
|
|
|
|
def to_gpu(self): |
|
|
"""Move o pipeline para a GPU designada E OTIMIZA SE POSSÍVEL.""" |
|
|
if self.device.type == 'cpu': return |
|
|
logger.info(f"LTX Worker: Movendo pipeline para a GPU {self.device}...") |
|
|
self.pipeline.to(self.device) |
|
|
|
|
|
if self.device.type == 'cuda' and can_optimize_fp8(): |
|
|
logger.info(f"LTX Worker ({self.device}): GPU com suporte a FP8 detectada. Iniciando otimização...") |
|
|
optimize_ltx_worker(self) |
|
|
logger.info(f"LTX Worker ({self.device}): Otimização concluída.") |
|
|
elif self.device.type == 'cuda': |
|
|
logger.info(f"LTX Worker ({self.device}): Otimização FP8 não suportada ou desativada.") |
|
|
|
|
|
def to_cpu(self): |
|
|
"""Move o pipeline de volta para a CPU e libera a memória da GPU.""" |
|
|
if self.device.type == 'cpu': return |
|
|
logger.info(f"LTX Worker: Descarregando pipeline da GPU {self.device}...") |
|
|
self.pipeline.to('cpu') |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): torch.cuda.empty_cache() |
|
|
|
|
|
def generate_video_fragment_internal(self, **kwargs): |
|
|
"""Invoca a pipeline de geração.""" |
|
|
return self.pipeline(**kwargs).images |
|
|
|
|
|
class LtxPoolManager: |
|
|
""" |
|
|
Gerencia um pool de LtxWorkers. MODO "HOT START": Mantém todos os modelos carregados na VRAM. |
|
|
""" |
|
|
def __init__(self, device_ids, ltx_config_file): |
|
|
logger.info(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}") |
|
|
self.workers = [LtxWorker(dev_id, ltx_config_file) for dev_id in device_ids] |
|
|
self.current_worker_index = 0 |
|
|
self.lock = threading.Lock() |
|
|
|
|
|
if all(w.device.type == 'cuda' for w in self.workers): |
|
|
logger.info("LTX POOL MANAGER: MODO HOT START ATIVADO. Pré-aquecendo todas as GPUs...") |
|
|
for worker in self.workers: |
|
|
worker.to_gpu() |
|
|
logger.info("LTX POOL MANAGER: Todas as GPUs estão quentes e prontas.") |
|
|
else: |
|
|
logger.info("LTX POOL MANAGER: Operando em modo CPU ou misto. O pré-aquecimento de GPU foi ignorado.") |
|
|
|
|
|
def _prepare_and_log_params(self, worker_to_use, **kwargs): |
|
|
target_device = worker_to_use.device |
|
|
height, width = kwargs['height'], kwargs['width'] |
|
|
|
|
|
conditioning_data = kwargs.get('conditioning_items_data', []) |
|
|
final_conditioning_items = [] |
|
|
conditioning_log_details = [] |
|
|
for i, item in enumerate(conditioning_data): |
|
|
if hasattr(item, 'latent_tensor'): |
|
|
item.latent_tensor = item.latent_tensor.to(target_device) |
|
|
final_conditioning_items.append(item) |
|
|
conditioning_log_details.append( |
|
|
f" - Item {i}: frame={item.media_frame_number}, strength={item.conditioning_strength:.2f}, shape={list(item.latent_tensor.shape)}" |
|
|
) |
|
|
|
|
|
first_pass_config = worker_to_use.config.get("first_pass", {}) |
|
|
|
|
|
if 'latents' in kwargs and kwargs['latents'] is not None: |
|
|
padded_h, padded_w = height, width |
|
|
padding_vals = (0, 0, 0, 0) |
|
|
else: |
|
|
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 |
|
|
padding_vals = calculate_padding(height, width, padded_h, padded_w) |
|
|
|
|
|
pipeline_params = { |
|
|
"height": padded_h, "width": padded_w, |
|
|
"num_frames": kwargs['video_total_frames'], "frame_rate": kwargs['video_fps'], |
|
|
"generator": torch.Generator(device=target_device).manual_seed(int(kwargs.get('seed', time.time())) + kwargs['current_fragment_index']), |
|
|
"conditioning_items": final_conditioning_items, |
|
|
"is_video": True, "vae_per_channel_normalize": True, |
|
|
"decode_timestep": float(kwargs.get('decode_timestep', worker_to_use.config.get("decode_timestep", 0.05))), |
|
|
"image_cond_noise_scale": float(kwargs.get('image_cond_noise_scale', 0.0)), |
|
|
"prompt": kwargs['motion_prompt'], |
|
|
"negative_prompt": kwargs.get('negative_prompt', "blurry, distorted, static, bad quality, artifacts"), |
|
|
"guidance_scale": float(kwargs.get('guidance_scale', 2.0)), |
|
|
"stg_scale": float(kwargs.get('stg_scale', 0.025)), |
|
|
"rescaling_scale": float(kwargs.get('rescaling_scale', 0.15)), |
|
|
} |
|
|
|
|
|
if worker_to_use.is_distilled: |
|
|
pipeline_params["timesteps"] = first_pass_config.get("timesteps") |
|
|
pipeline_params["num_inference_steps"] = len(pipeline_params["timesteps"]) if "timesteps" in first_pass_config else 20 |
|
|
else: |
|
|
pipeline_params["num_inference_steps"] = int(kwargs.get('num_inference_steps', 20)) |
|
|
|
|
|
log_friendly_params = pipeline_params.copy() |
|
|
log_friendly_params.pop('generator', None) |
|
|
log_friendly_params.pop('conditioning_items', None) |
|
|
|
|
|
logger.info("="*60) |
|
|
logger.info(f"CHAMADA AO PIPELINE LTX NO DISPOSITIVO: {worker_to_use.device}") |
|
|
|
|
|
return pipeline_params, padding_vals |
|
|
|
|
|
def _execute_on_worker(self, execution_fn, **kwargs): |
|
|
worker_to_use = None |
|
|
try: |
|
|
with self.lock: |
|
|
worker_to_use = self.workers[self.current_worker_index] |
|
|
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers) |
|
|
|
|
|
result, padding_vals = execution_fn(worker_to_use, **kwargs) |
|
|
|
|
|
return result, padding_vals |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"LTX POOL MANAGER: Erro durante a execução em {worker_to_use.device if worker_to_use else 'N/A'}: {e}", exc_info=True) |
|
|
raise e |
|
|
finally: |
|
|
if worker_to_use and worker_to_use.device.type == 'cuda': |
|
|
with torch.cuda.device(worker_to_use.device): |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
def generate_latent_fragment(self, **kwargs) -> (torch.Tensor, tuple): |
|
|
def execution_logic(worker, **inner_kwargs): |
|
|
pipeline_params, padding_vals = self._prepare_and_log_params(worker, **inner_kwargs) |
|
|
pipeline_params['output_type'] = "latent" |
|
|
with torch.no_grad(): |
|
|
result_tensor = worker.generate_video_fragment_internal(**pipeline_params) |
|
|
return result_tensor, padding_vals |
|
|
|
|
|
return self._execute_on_worker(execution_logic, **kwargs) |
|
|
|
|
|
def refine_latents(self, upscaled_latents: torch.Tensor, **kwargs) -> (torch.Tensor, tuple): |
|
|
def execution_logic(worker, **inner_kwargs): |
|
|
pipeline_params, padding_vals = self._prepare_and_log_params(worker, **inner_kwargs) |
|
|
|
|
|
strength = inner_kwargs.get('denoise_strength', 0.4) |
|
|
num_refine_steps_requested = int(inner_kwargs.get('refine_steps', 10)) |
|
|
|
|
|
allowed_timesteps = worker.config.get("first_pass", {}).get("timesteps") |
|
|
|
|
|
if allowed_timesteps is None: |
|
|
scheduler = worker.pipeline.scheduler |
|
|
scheduler.set_timesteps(num_refine_steps_requested, device=worker.device) |
|
|
timesteps = scheduler.timesteps |
|
|
else: |
|
|
timesteps = torch.tensor(allowed_timesteps, device=worker.device) |
|
|
|
|
|
num_total_timesteps = len(timesteps) |
|
|
start_timestep_idx = int(num_total_timesteps * strength) |
|
|
if start_timestep_idx >= num_total_timesteps: |
|
|
start_timestep_idx = num_total_timesteps - 1 |
|
|
|
|
|
start_timestep = timesteps[start_timestep_idx] |
|
|
|
|
|
noise = torch.randn_like(upscaled_latents, device=worker.device) |
|
|
noisy_latents = worker.pipeline.scheduler.add_noise(upscaled_latents.to(worker.device), noise, start_timestep) |
|
|
|
|
|
final_timesteps = timesteps[start_timestep_idx:] |
|
|
pipeline_params['latents'] = noisy_latents.to(worker.device, dtype=worker.pipeline.transformer.dtype) |
|
|
pipeline_params['timesteps'] = final_timesteps |
|
|
pipeline_params['num_inference_steps'] = len(final_timesteps) |
|
|
pipeline_params.pop('strength', None) |
|
|
pipeline_params['output_type'] = "latent" |
|
|
|
|
|
logger.info(f"LTX POOL MANAGER: Iniciando refinamento com {len(final_timesteps)} passos a partir do timestep {start_timestep.item():.4f}.") |
|
|
|
|
|
with torch.no_grad(): |
|
|
refined_tensor = worker.generate_video_fragment_internal(**pipeline_params) |
|
|
|
|
|
return refined_tensor, padding_vals |
|
|
|
|
|
return self._execute_on_worker(execution_logic, upscaled_latents=upscaled_latents, **kwargs) |
|
|
|
|
|
|
|
|
logger.info("Lendo config.yaml para inicializar o LTX Pool Manager...") |
|
|
with open("config.yaml", 'r') as f: |
|
|
config = yaml.safe_load(f) |
|
|
ltx_gpus_required = config['specialists']['ltx']['gpus_required'] |
|
|
ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required) |
|
|
ltx_config_path = config['specialists']['ltx']['config_file'] |
|
|
ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file=ltx_config_path) |
|
|
logger.info("Especialista de Vídeo (LTX) pronto.") |