Aduc_sdr / ltx_manager_helpers.py
euiia's picture
Update ltx_manager_helpers.py
8894134 verified
raw
history blame
11.8 kB
# ltx_manager_helpers.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# ORIGINAL SOURCE: LTX-Video by Lightricks Ltd. & other open-source projects.
# Licensed under the Apache License, Version 2.0
# https://github.com/Lightricks/LTX-Video
#
# MODIFICATIONS FOR ADUC-SDR_Video:
# This file is part of ADUC-SDR_Video, a derivative work based on LTX-Video.
# It has been modified to manage pools of LTX workers, handle GPU memory,
# and prepare parameters for the ADUC-SDR orchestration framework.
# All modifications are also licensed under the Apache License, Version 2.0.
import torch
import gc
import os
import yaml
import logging
import huggingface_hub
import time
import threading
import json
from optimization import optimize_ltx_worker, can_optimize_fp8
from hardware_manager import hardware_manager
from inference import create_ltx_video_pipeline, calculate_padding
from ltx_video.pipelines.pipeline_ltx_video import LatentConditioningItem
logger = logging.getLogger(__name__)
class LtxWorker:
"""
Representa uma única instância da pipeline LTX-Video em um dispositivo específico.
Gerencia o carregamento do modelo para a CPU e a movimentação de/para a GPU.
"""
def __init__(self, device_id, ltx_config_file):
self.cpu_device = torch.device('cpu')
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
logger.info(f"LTX Worker ({self.device}): Inicializando com config '{ltx_config_file}'...")
with open(ltx_config_file, "r") as file:
self.config = yaml.safe_load(file)
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "")
models_dir = "downloaded_models_gradio"
logger.info(f"LTX Worker ({self.device}): Carregando modelo para a CPU...")
model_path = os.path.join(models_dir, self.config["checkpoint_path"])
if not os.path.exists(model_path):
model_path = huggingface_hub.hf_hub_download(
repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"],
local_dir=models_dir, local_dir_use_symlinks=False
)
self.pipeline = create_ltx_video_pipeline(
ckpt_path=model_path, precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"], device='cpu'
)
logger.info(f"LTX Worker ({self.device}): Modelo pronto na CPU. É um modelo destilado? {self.is_distilled}")
def to_gpu(self):
"""Move o pipeline para a GPU designada E OTIMIZA SE POSSÍVEL."""
if self.device.type == 'cpu': return
logger.info(f"LTX Worker: Movendo pipeline para a GPU {self.device}...")
self.pipeline.to(self.device)
if self.device.type == 'cuda' and can_optimize_fp8():
logger.info(f"LTX Worker ({self.device}): GPU com suporte a FP8 detectada. Iniciando otimização...")
optimize_ltx_worker(self)
logger.info(f"LTX Worker ({self.device}): Otimização concluída.")
elif self.device.type == 'cuda':
logger.info(f"LTX Worker ({self.device}): Otimização FP8 não suportada ou desativada.")
def to_cpu(self):
"""Move o pipeline de volta para a CPU e libera a memória da GPU."""
if self.device.type == 'cpu': return
logger.info(f"LTX Worker: Descarregando pipeline da GPU {self.device}...")
self.pipeline.to('cpu')
gc.collect()
if torch.cuda.is_available(): torch.cuda.empty_cache()
def generate_video_fragment_internal(self, **kwargs):
"""Invoca a pipeline de geração."""
return self.pipeline(**kwargs).images
class LtxPoolManager:
"""
Gerencia um pool de LtxWorkers. MODO "HOT START": Mantém todos os modelos carregados na VRAM.
"""
def __init__(self, device_ids, ltx_config_file):
logger.info(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}")
self.workers = [LtxWorker(dev_id, ltx_config_file) for dev_id in device_ids]
self.current_worker_index = 0
self.lock = threading.Lock()
if all(w.device.type == 'cuda' for w in self.workers):
logger.info("LTX POOL MANAGER: MODO HOT START ATIVADO. Pré-aquecendo todas as GPUs...")
for worker in self.workers:
worker.to_gpu()
logger.info("LTX POOL MANAGER: Todas as GPUs estão quentes e prontas.")
else:
logger.info("LTX POOL MANAGER: Operando em modo CPU ou misto. O pré-aquecimento de GPU foi ignorado.")
def _prepare_and_log_params(self, worker_to_use, **kwargs):
target_device = worker_to_use.device
height, width = kwargs['height'], kwargs['width']
conditioning_data = kwargs.get('conditioning_items_data', [])
final_conditioning_items = []
conditioning_log_details = []
for i, item in enumerate(conditioning_data):
if hasattr(item, 'latent_tensor'):
item.latent_tensor = item.latent_tensor.to(target_device)
final_conditioning_items.append(item)
conditioning_log_details.append(
f" - Item {i}: frame={item.media_frame_number}, strength={item.conditioning_strength:.2f}, shape={list(item.latent_tensor.shape)}"
)
first_pass_config = worker_to_use.config.get("first_pass", {})
if 'latents' in kwargs and kwargs['latents'] is not None:
padded_h, padded_w = height, width
padding_vals = (0, 0, 0, 0)
else:
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
padding_vals = calculate_padding(height, width, padded_h, padded_w)
pipeline_params = {
"height": padded_h, "width": padded_w,
"num_frames": kwargs['video_total_frames'], "frame_rate": kwargs['video_fps'],
"generator": torch.Generator(device=target_device).manual_seed(int(kwargs.get('seed', time.time())) + kwargs['current_fragment_index']),
"conditioning_items": final_conditioning_items,
"is_video": True, "vae_per_channel_normalize": True,
"decode_timestep": float(kwargs.get('decode_timestep', worker_to_use.config.get("decode_timestep", 0.05))),
"image_cond_noise_scale": float(kwargs.get('image_cond_noise_scale', 0.0)),
"prompt": kwargs['motion_prompt'],
"negative_prompt": kwargs.get('negative_prompt', "blurry, distorted, static, bad quality, artifacts"),
"guidance_scale": float(kwargs.get('guidance_scale', 2.0)),
"stg_scale": float(kwargs.get('stg_scale', 0.025)),
"rescaling_scale": float(kwargs.get('rescaling_scale', 0.15)),
}
if worker_to_use.is_distilled:
pipeline_params["timesteps"] = first_pass_config.get("timesteps")
pipeline_params["num_inference_steps"] = len(pipeline_params["timesteps"]) if "timesteps" in first_pass_config else 20
else:
pipeline_params["num_inference_steps"] = int(kwargs.get('num_inference_steps', 20))
log_friendly_params = pipeline_params.copy()
log_friendly_params.pop('generator', None)
log_friendly_params.pop('conditioning_items', None)
logger.info("="*60)
logger.info(f"CHAMADA AO PIPELINE LTX NO DISPOSITIVO: {worker_to_use.device}")
return pipeline_params, padding_vals
def _execute_on_worker(self, execution_fn, **kwargs):
worker_to_use = None
try:
with self.lock:
worker_to_use = self.workers[self.current_worker_index]
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
result, padding_vals = execution_fn(worker_to_use, **kwargs)
return result, padding_vals
except Exception as e:
logger.error(f"LTX POOL MANAGER: Erro durante a execução em {worker_to_use.device if worker_to_use else 'N/A'}: {e}", exc_info=True)
raise e
finally:
if worker_to_use and worker_to_use.device.type == 'cuda':
with torch.cuda.device(worker_to_use.device):
gc.collect()
torch.cuda.empty_cache()
def generate_latent_fragment(self, **kwargs) -> (torch.Tensor, tuple):
def execution_logic(worker, **inner_kwargs):
pipeline_params, padding_vals = self._prepare_and_log_params(worker, **inner_kwargs)
pipeline_params['output_type'] = "latent"
with torch.no_grad():
result_tensor = worker.generate_video_fragment_internal(**pipeline_params)
return result_tensor, padding_vals
return self._execute_on_worker(execution_logic, **kwargs)
def refine_latents(self, upscaled_latents: torch.Tensor, **kwargs) -> (torch.Tensor, tuple):
def execution_logic(worker, **inner_kwargs):
pipeline_params, padding_vals = self._prepare_and_log_params(worker, **inner_kwargs)
strength = inner_kwargs.get('denoise_strength', 0.4)
num_refine_steps_requested = int(inner_kwargs.get('refine_steps', 10))
allowed_timesteps = worker.config.get("first_pass", {}).get("timesteps")
if allowed_timesteps is None:
scheduler = worker.pipeline.scheduler
scheduler.set_timesteps(num_refine_steps_requested, device=worker.device)
timesteps = scheduler.timesteps
else:
timesteps = torch.tensor(allowed_timesteps, device=worker.device)
num_total_timesteps = len(timesteps)
start_timestep_idx = int(num_total_timesteps * strength)
if start_timestep_idx >= num_total_timesteps:
start_timestep_idx = num_total_timesteps - 1
start_timestep = timesteps[start_timestep_idx]
noise = torch.randn_like(upscaled_latents, device=worker.device)
noisy_latents = worker.pipeline.scheduler.add_noise(upscaled_latents.to(worker.device), noise, start_timestep)
final_timesteps = timesteps[start_timestep_idx:]
pipeline_params['latents'] = noisy_latents.to(worker.device, dtype=worker.pipeline.transformer.dtype)
pipeline_params['timesteps'] = final_timesteps
pipeline_params['num_inference_steps'] = len(final_timesteps)
pipeline_params.pop('strength', None)
pipeline_params['output_type'] = "latent"
logger.info(f"LTX POOL MANAGER: Iniciando refinamento com {len(final_timesteps)} passos a partir do timestep {start_timestep.item():.4f}.")
with torch.no_grad():
refined_tensor = worker.generate_video_fragment_internal(**pipeline_params)
return refined_tensor, padding_vals
return self._execute_on_worker(execution_logic, upscaled_latents=upscaled_latents, **kwargs)
# --- Instanciação Singleton ---
logger.info("Lendo config.yaml para inicializar o LTX Pool Manager...")
with open("config.yaml", 'r') as f:
config = yaml.safe_load(f)
ltx_gpus_required = config['specialists']['ltx']['gpus_required']
ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required)
ltx_config_path = config['specialists']['ltx']['config_file']
ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file=ltx_config_path)
logger.info("Especialista de Vídeo (LTX) pronto.")