|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import time |
|
|
import imageio |
|
|
import numpy as np |
|
|
import torch |
|
|
import logging |
|
|
from PIL import Image, ImageOps |
|
|
from dataclasses import dataclass |
|
|
import gradio as gr |
|
|
import subprocess |
|
|
import random |
|
|
import gc |
|
|
|
|
|
from audio_specialist import audio_specialist_singleton |
|
|
from ltx_manager_helpers import ltx_manager_singleton |
|
|
from flux_kontext_helpers import flux_kontext_singleton |
|
|
from gemini_helpers import gemini_singleton |
|
|
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
|
class LatentConditioningItem: |
|
|
latent_tensor: torch.Tensor |
|
|
media_frame_number: int |
|
|
conditioning_strength: float |
|
|
|
|
|
class Deformes4DEngine: |
|
|
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"): |
|
|
self.ltx_manager = ltx_manager |
|
|
self.workspace_dir = workspace_dir |
|
|
self._vae = None |
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
logger.info("Especialista Deformes4D (SDR Executor) inicializado.") |
|
|
|
|
|
@property |
|
|
def vae(self): |
|
|
if self._vae is None: |
|
|
self._vae = self.ltx_manager.workers[0].pipeline.vae |
|
|
self._vae.to(self.device); self._vae.eval() |
|
|
return self._vae |
|
|
|
|
|
|
|
|
def save_latent_tensor(self, tensor: torch.Tensor, path: str): |
|
|
torch.save(tensor.cpu(), path) |
|
|
logger.info(f"Tensor latente salvo em: {path}") |
|
|
|
|
|
def load_latent_tensor(self, path: str) -> torch.Tensor: |
|
|
tensor = torch.load(path, map_location=self.device) |
|
|
logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}") |
|
|
return tensor |
|
|
|
|
|
@torch.no_grad() |
|
|
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor: |
|
|
tensor = tensor.to(self.device, dtype=self.vae.dtype) |
|
|
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True) |
|
|
|
|
|
@torch.no_grad() |
|
|
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor: |
|
|
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype) |
|
|
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype) |
|
|
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True) |
|
|
|
|
|
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24): |
|
|
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return |
|
|
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0) |
|
|
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0 |
|
|
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8) |
|
|
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer: |
|
|
for frame in video_np: writer.append_data(frame) |
|
|
logger.info(f"VÃdeo salvo em: {path}") |
|
|
|
|
|
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image: |
|
|
if image.size != target_resolution: |
|
|
logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.") |
|
|
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS) |
|
|
return image |
|
|
|
|
|
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor: |
|
|
image_np = np.array(pil_image).astype(np.float32) / 255.0 |
|
|
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2) |
|
|
tensor = (tensor * 2.0) - 1.0 |
|
|
return self.pixels_to_latents(tensor) |
|
|
|
|
|
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name): |
|
|
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4") |
|
|
pixel_tensor = self.latents_to_pixels(latent_tensor) |
|
|
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24) |
|
|
del pixel_tensor; gc.collect() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return silent_video_path |
|
|
|
|
|
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate): |
|
|
final_ltx_params = { |
|
|
**ltx_params, |
|
|
'width': target_resolution[0], 'height': target_resolution[1], |
|
|
'video_total_frames': total_frames_to_generate, 'video_fps': 24, |
|
|
'current_fragment_index': int(time.time()), |
|
|
'conditioning_items_data': conditioning_items |
|
|
} |
|
|
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params) |
|
|
return new_full_latents |
|
|
|
|
|
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str: |
|
|
if not video_paths: |
|
|
raise gr.Error("Nenhum fragmento de vÃdeo para montar.") |
|
|
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt") |
|
|
with open(list_file_path, 'w', encoding='utf-8') as f: |
|
|
for path in video_paths: |
|
|
f.write(f"file '{os.path.abspath(path)}'\n") |
|
|
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path] |
|
|
logger.info("Executando concatenação FFmpeg...") |
|
|
try: |
|
|
subprocess.run(cmd_list, check=True, capture_output=True, text=True) |
|
|
except subprocess.CalledProcessError as e: |
|
|
logger.error(f"Erro no FFmpeg: {e.stderr}") |
|
|
raise gr.Error(f"Falha na montagem final do vÃdeo. Detalhes: {e.stderr}") |
|
|
return output_path |
|
|
|
|
|
def generate_full_movie(self, |
|
|
keyframes: list, |
|
|
global_prompt: str, |
|
|
storyboard: list, |
|
|
seconds_per_fragment: float, |
|
|
overlap_percent: int, |
|
|
echo_frames: int, |
|
|
handler_strength: float, |
|
|
destination_convergence_strength: float, |
|
|
video_resolution: int, |
|
|
use_continuity_director: bool, |
|
|
progress: gr.Progress = gr.Progress()): |
|
|
|
|
|
base_ltx_params = { |
|
|
"guidance_scale": 1.0, "stg_scale": 0.0, |
|
|
"rescaling_scale": 0.15, "num_inference_steps": 7, |
|
|
} |
|
|
|
|
|
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes] |
|
|
video_clips_paths, story_history, audio_history = [], "", "This is the beginning of the film." |
|
|
target_resolution_tuple = (video_resolution, video_resolution) |
|
|
n_trim_latents = self._quantize_to_multiple(int(seconds_per_fragment * 24 * (overlap_percent / 100.0)), 8) |
|
|
|
|
|
|
|
|
prepared_echo_latent = None |
|
|
prepared_handler_latent = None |
|
|
|
|
|
num_transitions_to_generate = len(keyframe_paths) - 1 |
|
|
|
|
|
for i in range(num_transitions_to_generate): |
|
|
progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}") |
|
|
|
|
|
start_keyframe_path = keyframe_paths[i] |
|
|
destination_keyframe_path = keyframe_paths[i+1] |
|
|
present_scene_desc = storyboard[i] |
|
|
|
|
|
is_first_fragment = (prepared_handler_latent is None) |
|
|
|
|
|
|
|
|
if is_first_fragment: |
|
|
transition_type = "start" |
|
|
motion_prompt = gemini_singleton.get_initial_motion_prompt( |
|
|
global_prompt, start_keyframe_path, destination_keyframe_path, present_scene_desc |
|
|
) |
|
|
else: |
|
|
past_keyframe_path = keyframe_paths[i-1] |
|
|
past_scene_desc = storyboard[i-1] |
|
|
future_scene_desc = storyboard[i+1] if (i+1) < len(storyboard) else "A cena final." |
|
|
decision = gemini_singleton.get_cinematic_decision( |
|
|
global_prompt=global_prompt, story_history=story_history, |
|
|
past_keyframe_path=past_keyframe_path, present_keyframe_path=start_keyframe_path, |
|
|
future_keyframe_path=destination_keyframe_path, past_scene_desc=past_scene_desc, |
|
|
present_scene_desc=present_scene_desc, future_scene_desc=future_scene_desc |
|
|
) |
|
|
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"] |
|
|
|
|
|
story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}" |
|
|
|
|
|
if use_continuity_director: |
|
|
if is_first_fragment: |
|
|
audio_prompt = gemini_singleton.get_sound_director_prompt( |
|
|
audio_history=audio_history, |
|
|
past_keyframe_path=start_keyframe_path, present_keyframe_path=start_keyframe_path, |
|
|
future_keyframe_path=destination_keyframe_path, present_scene_desc=present_scene_desc, |
|
|
motion_prompt=motion_prompt, future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene." |
|
|
) |
|
|
else: |
|
|
audio_prompt = gemini_singleton.get_sound_director_prompt( |
|
|
audio_history=audio_history, past_keyframe_path=keyframe_paths[i-1], |
|
|
present_keyframe_path=start_keyframe_path, future_keyframe_path=destination_keyframe_path, |
|
|
present_scene_desc=present_scene_desc, motion_prompt=motion_prompt, |
|
|
future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene." |
|
|
) |
|
|
else: |
|
|
audio_prompt = present_scene_desc |
|
|
|
|
|
audio_history = audio_prompt |
|
|
|
|
|
conditioning_items = [] |
|
|
current_ltx_params = {**base_ltx_params, "handler_strength": handler_strength, "motion_prompt": motion_prompt} |
|
|
total_frames_to_generate = self._quantize_to_multiple(int(seconds_per_fragment * 24), 8) + 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_first_fragment: |
|
|
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
start_latent = self.pil_to_latent(img_start) |
|
|
conditioning_items.append(LatentConditioningItem(start_latent, 0, 1.0)) |
|
|
if transition_type != "cut": |
|
|
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
destination_latent = self.pil_to_latent(img_dest) |
|
|
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength)) |
|
|
else: |
|
|
|
|
|
conditioning_items.append(LatentConditioningItem(prepared_echo_latent, 0, 1.0)) |
|
|
conditioning_items.append(LatentConditioningItem(prepared_handler_latent, echo_frames, handler_strength)) |
|
|
if transition_type == "continuous": |
|
|
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple) |
|
|
destination_latent = self.pil_to_latent(img_dest) |
|
|
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength)) |
|
|
|
|
|
new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate) |
|
|
|
|
|
|
|
|
|
|
|
logger.info("--- [VERIFICAÇÃO DE CHUNKS INDIVIDUAIS] ---") |
|
|
total_chunks_verificados = new_full_latents.shape[2] |
|
|
for chunk_idx in range(total_chunks_verificados): |
|
|
try: |
|
|
|
|
|
single_chunk_latent = new_full_latents[:, :, chunk_idx:chunk_idx+1, :, :] |
|
|
|
|
|
|
|
|
temp_video_base_name = f"debug_chunk_{chunk_idx}" |
|
|
|
|
|
|
|
|
pixel_tensor = self.latents_to_pixels(single_chunk_latent) |
|
|
|
|
|
temp_video_path = self.save_video_from_tensor(pixel_tensor, temp_video_base_name, fps=24) |
|
|
|
|
|
|
|
|
if os.path.exists(temp_video_path): |
|
|
with imageio.get_reader(temp_video_path) as reader: |
|
|
frame_count = reader.count_frames() |
|
|
logger.info(f" - VERIFICADO: Chunk {chunk_idx} gerou um vídeo com {frame_count} frames.") |
|
|
|
|
|
os.remove(temp_video_path) |
|
|
else: |
|
|
logger.warning(f" - FALHA: Não foi possível gerar o vídeo para o Chunk {chunk_idx}.") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f" - ERRO ao verificar Chunk {chunk_idx}: {e}") |
|
|
logger.info("--- [FIM DA VERIFICAÇÃO] ---") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_last_fragment = (i == num_transitions_to_generate - 1) |
|
|
|
|
|
if not is_last_fragment: |
|
|
|
|
|
prepared_handler_latent = new_full_latents[:, :, -1:, :, :].clone() |
|
|
prepared_echo_latent = new_full_latents[:, :, -echo_frames:, :, :].clone() |
|
|
|
|
|
|
|
|
if n_trim_latents > 0 and new_full_latents.shape[2] > n_trim_latents: |
|
|
latents_for_video = new_full_latents[:, :, :-n_trim_latents, :, :] |
|
|
else: |
|
|
latents_for_video = new_full_latents |
|
|
else: |
|
|
|
|
|
latents_for_video = new_full_latents |
|
|
|
|
|
base_name = f"fragment_{i}_{int(time.time())}" |
|
|
video_with_audio_path = self._generate_video_and_audio_from_latents(latents_for_video, audio_prompt, base_name) |
|
|
video_clips_paths.append(video_with_audio_path) |
|
|
|
|
|
if transition_type == "cut": |
|
|
|
|
|
prepared_echo_latent = None |
|
|
prepared_handler_latent = None |
|
|
|
|
|
yield {"fragment_path": video_with_audio_path} |
|
|
|
|
|
final_movie_path = os.path.join(self.workspace_dir, f"final_movie_{int(time.time())}.mp4") |
|
|
self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path) |
|
|
|
|
|
logger.info(f"Filme completo salvo em: {final_movie_path}") |
|
|
yield {"final_path": final_movie_path} |
|
|
|
|
|
def _quantize_to_multiple(self, n, m): |
|
|
if m == 0: return n |
|
|
quantized = int(round(n / m) * m) |
|
|
return m if n > 0 and quantized == 0 else quantized |