|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import gc |
|
|
import os |
|
|
import yaml |
|
|
import logging |
|
|
import huggingface_hub |
|
|
import time |
|
|
import threading |
|
|
from typing import Optional, List, Tuple, Union |
|
|
|
|
|
from optimization import optimize_ltx_worker, can_optimize_fp8 |
|
|
from hardware_manager import hardware_manager |
|
|
from managers.ltx_pipeline_utils import create_ltx_video_pipeline, calculate_padding |
|
|
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem, LatentConditioningItem |
|
|
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords |
|
|
from ltx_video.pipelines.pipeline_ltx_video import LTXMultiScalePipeline |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _aduc_prepare_conditioning_patch( |
|
|
self: LTXVideoPipeline, |
|
|
conditioning_items: Optional[List[Union[ConditioningItem, "LatentConditioningItem"]]], |
|
|
init_latents: torch.Tensor, |
|
|
num_frames: int, |
|
|
height: int, |
|
|
width: int, |
|
|
vae_per_channel_normalize: bool = False, |
|
|
generator=None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: |
|
|
""" |
|
|
This is our custom version of the `prepare_conditioning` method. |
|
|
It correctly handles both standard ConditioningItem (from pixels) and our |
|
|
ADUC-specific LatentConditioningItem (from latents), which the original |
|
|
method does not. This function will replace the original one at runtime. |
|
|
""" |
|
|
if not conditioning_items: |
|
|
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents) |
|
|
init_pixel_coords = latent_to_pixel_coords( |
|
|
init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning |
|
|
) |
|
|
return init_latents, init_pixel_coords, None, 0 |
|
|
|
|
|
init_conditioning_mask = torch.zeros(init_latents[:, 0, :, :, :].shape, dtype=torch.float32, device=init_latents.device) |
|
|
extra_conditioning_latents = [] |
|
|
extra_conditioning_pixel_coords = [] |
|
|
extra_conditioning_mask = [] |
|
|
extra_conditioning_num_latents = 0 |
|
|
|
|
|
is_latent_mode = hasattr(conditioning_items[0], 'latent_tensor') |
|
|
|
|
|
if is_latent_mode: |
|
|
for item in conditioning_items: |
|
|
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device) |
|
|
media_frame_number = item.media_frame_number |
|
|
strength = item.conditioning_strength |
|
|
|
|
|
if media_frame_number == 0: |
|
|
f_l, h_l, w_l = media_item_latents.shape[-3:] |
|
|
init_latents[:, :, :f_l, :h_l, :w_l] = torch.lerp(init_latents[:, :, :f_l, :h_l, :w_l], media_item_latents, strength) |
|
|
init_conditioning_mask[:, :f_l, :h_l, :w_l] = strength |
|
|
else: |
|
|
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype) |
|
|
media_item_latents = torch.lerp(noise, media_item_latents, strength) |
|
|
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents) |
|
|
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning) |
|
|
pixel_coords[:, 0] += media_frame_number |
|
|
extra_conditioning_num_latents += patched_latents.shape[1] |
|
|
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device) |
|
|
extra_conditioning_latents.append(patched_latents) |
|
|
extra_conditioning_pixel_coords.append(pixel_coords) |
|
|
extra_conditioning_mask.append(new_mask) |
|
|
else: |
|
|
for item in conditioning_items: |
|
|
if not isinstance(item, ConditioningItem): continue |
|
|
item = self._resize_conditioning_item(item, height, width) |
|
|
media_item_latents = vae_encode( |
|
|
item.media_item.to(dtype=self.vae.dtype, device=self.vae.device), |
|
|
self.vae, vae_per_channel_normalize=vae_per_channel_normalize |
|
|
).to(dtype=init_latents.dtype) |
|
|
media_frame_number = item.media_frame_number |
|
|
strength = item.conditioning_strength |
|
|
if media_frame_number == 0: |
|
|
media_item_latents, l_x, l_y = self._get_latent_spatial_position(media_item_latents, item, height, width, strip_latent_border=True) |
|
|
f_l, h_l, w_l = media_item_latents.shape[-3:] |
|
|
init_latents[:, :, :f_l, l_y:l_y+h_l, l_x:l_x+w_l] = torch.lerp(init_latents[:, :, :f_l, l_y:l_y+h_l, l_x:l_x+w_l], media_item_latents, strength) |
|
|
init_conditioning_mask[:, :f_l, l_y:l_y+h_l, l_x:l_x+w_l] = strength |
|
|
else: |
|
|
logger.warning("Pixel-based conditioning for non-zero frames is not fully implemented in this patch.") |
|
|
pass |
|
|
|
|
|
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents) |
|
|
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning) |
|
|
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1)) |
|
|
init_conditioning_mask = init_conditioning_mask.squeeze(-1) |
|
|
|
|
|
if extra_conditioning_latents: |
|
|
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1) |
|
|
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2) |
|
|
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1) |
|
|
if self.transformer.use_tpu_flash_attention: |
|
|
init_latents = init_latents[:, :-extra_conditioning_num_latents] |
|
|
init_pixel_coords = init_pixel_coords[:, :, :-extra_conditioning_num_latents] |
|
|
init_conditioning_mask = init_conditioning_mask[:, :-extra_conditioning_num_latents] |
|
|
|
|
|
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LtxWorker: |
|
|
""" |
|
|
Represents a single instance of the LTX-Video pipeline on a specific device. |
|
|
Manages model loading to CPU and movement to/from GPU. |
|
|
""" |
|
|
def __init__(self, device_id, ltx_config_file): |
|
|
self.cpu_device = torch.device('cpu') |
|
|
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') |
|
|
logger.info(f"LTX Worker ({self.device}): Initializing with config '{ltx_config_file}'...") |
|
|
|
|
|
with open(ltx_config_file, "r") as file: |
|
|
self.config = yaml.safe_load(file) |
|
|
|
|
|
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "") |
|
|
|
|
|
models_dir = "downloaded_models_gradio" |
|
|
|
|
|
logger.info(f"LTX Worker ({self.device}): Loading model to CPU...") |
|
|
model_path = os.path.join(models_dir, self.config["checkpoint_path"]) |
|
|
if not os.path.exists(model_path): |
|
|
model_path = huggingface_hub.hf_hub_download( |
|
|
repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"], |
|
|
local_dir=models_dir, local_dir_use_symlinks=False |
|
|
) |
|
|
|
|
|
self.pipeline = create_ltx_video_pipeline( |
|
|
ckpt_path=model_path, precision=self.config["precision"], |
|
|
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], |
|
|
sampler=self.config["sampler"], device='cpu' |
|
|
) |
|
|
logger.info(f"LTX Worker ({self.device}): Model ready on CPU. Is distilled model? {self.is_distilled}") |
|
|
|
|
|
def to_gpu(self): |
|
|
"""Moves the pipeline to the designated GPU AND optimizes if possible.""" |
|
|
if self.device.type == 'cpu': return |
|
|
logger.info(f"LTX Worker: Moving pipeline to GPU {self.device}...") |
|
|
self.pipeline.to(self.device) |
|
|
|
|
|
if self.device.type == 'cuda' and can_optimize_fp8(): |
|
|
logger.info(f"LTX Worker ({self.device}): FP8 supported GPU detected. Optimizing...") |
|
|
optimize_ltx_worker(self) |
|
|
logger.info(f"LTX Worker ({self.device}): Optimization complete.") |
|
|
elif self.device.type == 'cuda': |
|
|
logger.info(f"LTX Worker ({self.device}): FP8 optimization not supported or disabled.") |
|
|
|
|
|
def to_cpu(self): |
|
|
"""Moves the pipeline back to the CPU and frees GPU memory.""" |
|
|
if self.device.type == 'cpu': return |
|
|
logger.info(f"LTX Worker: Unloading pipeline from GPU {self.device}...") |
|
|
self.pipeline.to('cpu') |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): torch.cuda.empty_cache() |
|
|
|
|
|
def generate_video_fragment_internal(self, **kwargs): |
|
|
"""Invokes the generation pipeline.""" |
|
|
return self.pipeline(**kwargs).images |
|
|
|
|
|
class LtxPoolManager: |
|
|
""" |
|
|
Manages a pool of LtxWorkers for optimized multi-GPU usage. |
|
|
HOT START MODE: Keeps all models loaded in VRAM for minimum latency. |
|
|
""" |
|
|
def __init__(self, device_ids, ltx_config_file): |
|
|
logger.info(f"LTX POOL MANAGER: Creating workers for devices: {device_ids}") |
|
|
self.workers = [LtxWorker(dev_id, ltx_config_file) for dev_id in device_ids] |
|
|
self.current_worker_index = 0 |
|
|
self.lock = threading.Lock() |
|
|
|
|
|
self._apply_ltx_pipeline_patches() |
|
|
|
|
|
if all(w.device.type == 'cuda' for w in self.workers): |
|
|
logger.info("LTX POOL MANAGER: HOT START MODE ENABLED. Pre-warming all GPUs...") |
|
|
for worker in self.workers: |
|
|
worker.to_gpu() |
|
|
logger.info("LTX POOL MANAGER: All GPUs are hot and ready.") |
|
|
else: |
|
|
logger.info("LTX POOL MANAGER: Operating in CPU or mixed mode. GPU pre-warming skipped.") |
|
|
|
|
|
def _apply_ltx_pipeline_patches(self): |
|
|
""" |
|
|
Applies runtime patches to the LTX pipeline for ADUC-SDR compatibility. |
|
|
""" |
|
|
logger.info("LTX POOL MANAGER: Applying ADUC-SDR patches to LTX pipeline...") |
|
|
for worker in self.workers: |
|
|
worker.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(worker.pipeline, LTXVideoPipeline) |
|
|
logger.info("LTX POOL MANAGER: All pipeline instances have been patched successfully.") |
|
|
|
|
|
def _get_next_worker(self): |
|
|
with self.lock: |
|
|
worker = self.workers[self.current_worker_index] |
|
|
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers) |
|
|
return worker |
|
|
|
|
|
def _prepare_pipeline_params(self, worker: LtxWorker, **kwargs) -> dict: |
|
|
pipeline_params = { |
|
|
"height": kwargs['height'], "width": kwargs['width'], "num_frames": kwargs['video_total_frames'], |
|
|
"frame_rate": kwargs.get('video_fps', 24), |
|
|
"generator": torch.Generator(device=worker.device).manual_seed(int(time.time()) + kwargs.get('current_fragment_index', 0)), |
|
|
"is_video": True, "vae_per_channel_normalize": True, |
|
|
"prompt": kwargs.get('motion_prompt', ""), "negative_prompt": kwargs.get('negative_prompt', "blurry, distorted, static, bad quality"), |
|
|
"guidance_scale": kwargs.get('guidance_scale', 1.0), "stg_scale": kwargs.get('stg_scale', 0.0), |
|
|
"rescaling_scale": kwargs.get('rescaling_scale', 0.15), "num_inference_steps": kwargs.get('num_inference_steps', 20), |
|
|
"output_type": "latent" |
|
|
} |
|
|
if 'latents' in kwargs: |
|
|
pipeline_params["latents"] = kwargs['latents'].to(worker.device, dtype=worker.pipeline.transformer.dtype) |
|
|
if 'strength' in kwargs: |
|
|
pipeline_params["strength"] = kwargs['strength'] |
|
|
if 'conditioning_items_data' in kwargs: |
|
|
final_conditioning_items = [] |
|
|
for item in kwargs['conditioning_items_data']: |
|
|
item.latent_tensor = item.latent_tensor.to(worker.device) |
|
|
final_conditioning_items.append(item) |
|
|
pipeline_params["conditioning_items"] = final_conditioning_items |
|
|
if worker.is_distilled: |
|
|
logger.info(f"Worker {worker.device} is using a distilled model. Using fixed timesteps.") |
|
|
fixed_timesteps = worker.config.get("first_pass", {}).get("timesteps") |
|
|
pipeline_params["timesteps"] = fixed_timesteps |
|
|
if fixed_timesteps: |
|
|
pipeline_params["num_inference_steps"] = len(fixed_timesteps) |
|
|
return pipeline_params |
|
|
|
|
|
def generate_latent_fragment(self, **kwargs) -> (torch.Tensor, tuple): |
|
|
worker_to_use = self._get_next_worker() |
|
|
try: |
|
|
height, width = kwargs['height'], kwargs['width'] |
|
|
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 |
|
|
padding_vals = calculate_padding(height, width, padded_h, padded_w) |
|
|
kwargs['height'], kwargs['width'] = padded_h, padded_w |
|
|
pipeline_params = self._prepare_pipeline_params(worker_to_use, **kwargs) |
|
|
logger.info(f"Initiating GENERATION on {worker_to_use.device} with shape {padded_w}x{padded_h}") |
|
|
if isinstance(worker_to_use.pipeline, LTXMultiScalePipeline): |
|
|
result = worker_to_use.pipeline.video_pipeline(**pipeline_params).images |
|
|
else: |
|
|
result = worker_to_use.generate_video_fragment_internal(**pipeline_params) |
|
|
return result, padding_vals |
|
|
except Exception as e: |
|
|
logger.error(f"LTX POOL MANAGER: Error during generation on {worker_to_use.device}: {e}", exc_info=True) |
|
|
raise e |
|
|
finally: |
|
|
if worker_to_use and worker_to_use.device.type == 'cuda': |
|
|
with torch.cuda.device(worker_to_use.device): |
|
|
gc.collect(); torch.cuda.empty_cache() |
|
|
|
|
|
def refine_latents(self, latents_to_refine: torch.Tensor, **kwargs) -> (torch.Tensor, tuple): |
|
|
worker_to_use = self._get_next_worker() |
|
|
try: |
|
|
_b, _c, _f, latent_h, latent_w = latents_to_refine.shape |
|
|
vae_scale_factor = worker_to_use.pipeline.vae_scale_factor |
|
|
kwargs['height'] = latent_h * vae_scale_factor |
|
|
kwargs['width'] = latent_w * vae_scale_factor |
|
|
kwargs['video_total_frames'] = kwargs.get('video_total_frames', _f * worker_to_use.pipeline.video_scale_factor) |
|
|
kwargs['latents'] = latents_to_refine |
|
|
kwargs['strength'] = kwargs.get('denoise_strength', 0.4) |
|
|
kwargs['num_inference_steps'] = int(kwargs.get('refine_steps', 10)) |
|
|
pipeline_params = self._prepare_pipeline_params(worker_to_use, **kwargs) |
|
|
logger.info(f"Initiating REFINEMENT on {worker_to_use.device} with shape {kwargs['width']}x{kwargs['height']}") |
|
|
pipeline_to_call = worker_to_use.pipeline.video_pipeline if isinstance(worker_to_use.pipeline, LTXMultiScalePipeline) else worker_to_use.pipeline |
|
|
result = pipeline_to_call(**pipeline_params).images |
|
|
return result, None |
|
|
except torch.cuda.OutOfMemoryError as e: |
|
|
logger.error(f"MEMORY FAILURE DURING REFINEMENT on {worker_to_use.device}: {e}") |
|
|
logger.warning("Clearing VRAM and returning None to signal failure.") |
|
|
gc.collect(); torch.cuda.empty_cache() |
|
|
return None, None |
|
|
except Exception as e: |
|
|
logger.error(f"LTX POOL MANAGER: Unexpected error during refinement on {worker_to_use.device}: {e}", exc_info=True) |
|
|
raise e |
|
|
finally: |
|
|
if worker_to_use and worker_to_use.device.type == 'cuda': |
|
|
with torch.cuda.device(worker_to_use.device): |
|
|
gc.collect(); torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
logger.info("Reading config.yaml to initialize LTX Pool Manager...") |
|
|
with open("config.yaml", 'r') as f: |
|
|
config = yaml.safe_load(f) |
|
|
ltx_gpus_required = config['specialists']['ltx']['gpus_required'] |
|
|
ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required) |
|
|
ltx_config_path = config['specialists']['ltx']['config_file'] |
|
|
ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file=ltx_config_path) |
|
|
logger.info("Video Specialist (LTX) ready.") |