Aduc_sdr / deformes4D_engine.py
Carlexxx
aduc-sdr
c0e5fc7
raw
history blame
15.7 kB
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import random
import gc
from audio_specialist import audio_specialist_singleton
from ltx_manager_helpers import ltx_manager_singleton
from flux_kontext_helpers import flux_kontext_singleton
from gemini_helpers import gemini_singleton
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (SDR Executor) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
def save_latent_tensor(self, tensor: torch.Tensor, path: str):
torch.save(tensor.cpu(), path)
logger.info(f"Tensor latente salvo em: {path}")
def load_latent_tensor(self, path: str) -> torch.Tensor:
tensor = torch.load(path, map_location=self.device)
logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}")
return tensor
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
for frame in video_np: writer.append_data(frame)
logger.info(f"Vídeo salvo em: {path}")
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.")
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
pixel_tensor = self.latents_to_pixels(latent_tensor)
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
del pixel_tensor; gc.collect()
try:
result = subprocess.run(
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
capture_output=True, text=True, check=True)
frag_duration = float(result.stdout.strip())
except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
logger.warning(f"ffprobe falhou em {os.path.basename(silent_video_path)}. Calculando duração manualmente.")
num_pixel_frames = latent_tensor.shape[2] * 8
frag_duration = num_pixel_frames / 24.0
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
video_path=silent_video_path, prompt=audio_prompt,
duration_seconds=frag_duration)
if os.path.exists(silent_video_path):
os.remove(silent_video_path)
return video_with_audio_path
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
final_ltx_params = {
**ltx_params,
'width': target_resolution[0], 'height': target_resolution[1],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()),
'conditioning_items_data': conditioning_items
}
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
return new_full_latents
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
if not video_paths:
raise gr.Error("Nenhum fragmento de vídeo para montar.")
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
with open(list_file_path, 'w', encoding='utf-8') as f:
for path in video_paths:
f.write(f"file '{os.path.abspath(path)}'\n")
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
logger.info("Executando concatenação FFmpeg...")
try:
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
logger.error(f"Erro no FFmpeg: {e.stderr}")
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
return output_path
def generate_full_movie(self,
keyframes: list,
global_prompt: str,
storyboard: list,
seconds_per_fragment: float,
overlap_percent: int,
echo_frames: int,
handler_strength: float,
destination_convergence_strength: float,
base_ltx_params: dict,
video_resolution: int,
use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
video_clips_paths, story_history, audio_history = [], "", "This is the beginning of the film."
target_resolution_tuple = (video_resolution, video_resolution)
n_trim_latents = 24 #self._quantize_to_multiple(int(seconds_per_fragment * 24 * (overlap_percent / 100.0)), 8)
echo_frames = 8
previous_latents_path = None
num_transitions_to_generate = len(keyframe_paths) - 1
for i in range(num_transitions_to_generate):
progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}")
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i+1]
present_scene_desc = storyboard[i]
is_first_fragment = previous_latents_path is None
if is_first_fragment:
transition_type = "start"
motion_prompt = gemini_singleton.get_initial_motion_prompt(
global_prompt, start_keyframe_path, destination_keyframe_path, present_scene_desc
)
else:
past_keyframe_path = keyframe_paths[i-1]
past_scene_desc = storyboard[i-1]
future_scene_desc = storyboard[i+1] if (i+1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt=global_prompt, story_history=story_history,
past_keyframe_path=past_keyframe_path, present_keyframe_path=start_keyframe_path,
future_keyframe_path=destination_keyframe_path, past_scene_desc=past_scene_desc,
present_scene_desc=present_scene_desc, future_scene_desc=future_scene_desc
)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"
if use_continuity_director: # Assume-se que este checkbox controla os diretores de vídeo e som
if is_first_fragment:
audio_prompt = gemini_singleton.get_sound_director_prompt(
audio_history=audio_history,
past_keyframe_path=start_keyframe_path, present_keyframe_path=start_keyframe_path,
future_keyframe_path=destination_keyframe_path, present_scene_desc=present_scene_desc,
motion_prompt=motion_prompt, future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
)
else:
audio_prompt = gemini_singleton.get_sound_director_prompt(
audio_history=audio_history, past_keyframe_path=keyframe_paths[i-1],
present_keyframe_path=start_keyframe_path, future_keyframe_path=destination_keyframe_path,
present_scene_desc=present_scene_desc, motion_prompt=motion_prompt,
future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
)
else:
audio_prompt = present_scene_desc # Fallback para o prompt da cena se o diretor de som estiver desligado
audio_history = audio_prompt
conditioning_items = []
current_ltx_params = {**base_ltx_params, "handler_strength": handler_strength, "motion_prompt": motion_prompt}
total_frames_to_generate = self._quantize_to_multiple(int(seconds_per_fragment * 24), 8) + 1
if is_first_fragment:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
start_latent = self.pil_to_latent(img_start)
conditioning_items.append(LatentConditioningItem(start_latent, 0, 1.0))
if transition_type != "cut":
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
destination_latent = self.pil_to_latent(img_dest)
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
else:
previous_latents = self.load_latent_tensor(previous_latents_path)
handler_latent = previous_latents[:, :, -1:, :, :]
trimmed_for_echo = previous_latents[:, :, :-n_trim_latents, :, :] if n_trim_latents > 0 and previous_latents.shape[2] > n_trim_latents else previous_latents
echo_latents = trimmed_for_echo[:, :, -echo_frames:, :, :]
handler_frame_position = n_trim_latents + echo_frames
conditioning_items = []
for i, echo_latent in enumerate(echo_frames):
if i == 0:
weight = 1.0
else:
weight = random.uniform(0.2, 0.7)
conditioning_items.append(LatentConditioningItem(echo_latent, 0, weight))
#conditioning_items.append(LatentConditioningItem(echo_latents, 0, 1.0))
conditioning_items.append(LatentConditioningItem(handler_latent, handler_frame_position, handler_strength))
del previous_latents, handler_latent, trimmed_for_echo, echo_latents; gc.collect()
if transition_type == "continuous":
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
destination_latent = self.pil_to_latent(img_dest)
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate)
base_name = f"fragment_{i}_{int(time.time())}"
new_full_latents_path = os.path.join(self.workspace_dir, f"{base_name}_full.pt")
self.save_latent_tensor(new_full_latents, new_full_latents_path)
previous_latents_path = new_full_latents_path
latents_for_video = new_full_latents
if not is_first_fragment:
if echo_frames > 0 and latents_for_video.shape[2] > echo_frames: latents_for_video = latents_for_video[:, :, echo_frames:, :, :]
if n_trim_latents > 0 and latents_for_video.shape[2] > n_trim_latents: latents_for_video = latents_for_video[:, :, :-n_trim_latents, :, :]
else:
if n_trim_latents > 0 and latents_for_video.shape[2] > n_trim_latents: latents_for_video = latents_for_video[:, :, :-n_trim_latents, :, :]
video_with_audio_path = self._generate_video_and_audio_from_latents(latents_for_video, audio_prompt, base_name)
video_clips_paths.append(video_with_audio_path)
if transition_type == "cut":
previous_latents_path = None
yield {"fragment_path": video_with_audio_path}
final_movie_path = os.path.join(self.workspace_dir, f"final_movie_{int(time.time())}.mp4")
self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
logger.info(f"Filme completo salvo em: {final_movie_path}")
yield {"final_path": final_movie_path}
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized