|
|
|
|
|
|
|
|
import torch |
|
|
import imageio |
|
|
import os |
|
|
import gc |
|
|
import logging |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from tqdm import tqdm |
|
|
import shlex |
|
|
import subprocess |
|
|
from pathlib import Path |
|
|
from urllib.parse import urlparse |
|
|
from torch.hub import download_url_to_file, get_dir |
|
|
from omegaconf import OmegaConf |
|
|
|
|
|
|
|
|
from projects.video_diffusion_sr.infer import VideoDiffusionInfer |
|
|
from common.config import load_config |
|
|
from common.seed import set_seed |
|
|
from data.image.transforms.divisible_crop import DivisibleCrop |
|
|
from data.image.transforms.na_resize import NaResize |
|
|
from data.video.transforms.rearrange import Rearrange |
|
|
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction |
|
|
from torchvision.transforms import Compose, Lambda, Normalize |
|
|
from torchvision.io.video import read_video |
|
|
from einops import rearrange |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def _load_file_from_url(url, model_dir='./', file_name=None): |
|
|
os.makedirs(model_dir, exist_ok=True) |
|
|
filename = file_name or os.path.basename(urlparse(url).path) |
|
|
cached_file = os.path.abspath(os.path.join(model_dir, filename)) |
|
|
if not os.path.exists(cached_file): |
|
|
logger.info(f'Baixando: "{url}" para {cached_file}') |
|
|
download_url_to_file(url, cached_file, hash_prefix=None, progress=True) |
|
|
return cached_file |
|
|
|
|
|
class HDSpecialist: |
|
|
""" |
|
|
Implementa o Especialista HD (Δ+) usando a infraestrutura oficial do SeedVR. |
|
|
""" |
|
|
def __init__(self, workspace_dir="deformes_workspace"): |
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
self.runner = None |
|
|
self.workspace_dir = workspace_dir |
|
|
self.is_initialized = False |
|
|
logger.info("Especialista HD (SeedVR) inicializado. Modelo será carregado sob demanda.") |
|
|
|
|
|
def _setup_dependencies(self): |
|
|
"""Instala dependências complexas como Apex.""" |
|
|
logger.info("Configurando dependências do SeedVR (Apex)...") |
|
|
apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl' |
|
|
apex_wheel_path = _load_file_from_url(url=apex_url) |
|
|
|
|
|
|
|
|
subprocess.run(shlex.split(f"pip install {apex_wheel_path}"), check=True) |
|
|
logger.info("✅ Dependência Apex instalada com sucesso.") |
|
|
|
|
|
def _download_models(self): |
|
|
"""Baixa os checkpoints necessários para o SeedVR2.""" |
|
|
logger.info("Verificando e baixando modelos do SeedVR2...") |
|
|
ckpt_dir = Path('./ckpts') |
|
|
ckpt_dir.mkdir(exist_ok=True) |
|
|
|
|
|
pretrain_model_url = { |
|
|
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth', |
|
|
'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth', |
|
|
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt', |
|
|
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt' |
|
|
} |
|
|
|
|
|
_load_file_from_url(url=pretrain_model_url['dit'], model_dir='./ckpts/') |
|
|
_load_file_from_url(url=pretrain_model_url['vae'], model_dir='./ckpts/') |
|
|
_load_file_from_url(url=pretrain_model_url['pos_emb']) |
|
|
_load_file_from_url(url=pretrain_model_url['neg_emb']) |
|
|
logger.info("Modelos do SeedVR2 baixados com sucesso.") |
|
|
|
|
|
def _initialize_runner(self): |
|
|
"""Carrega e configura o modelo SeedVR sob demanda.""" |
|
|
if self.runner is not None: |
|
|
return |
|
|
|
|
|
self._setup_dependencies() |
|
|
self._download_models() |
|
|
|
|
|
logger.info("Inicializando o runner do SeedVR2...") |
|
|
config_path = os.path.join('./configs_3b', 'main.yaml') |
|
|
config = load_config(config_path) |
|
|
|
|
|
self.runner = VideoDiffusionInfer(config) |
|
|
OmegaConf.set_readonly(self.runner.config, False) |
|
|
|
|
|
self.runner.configure_dit_model(device=self.device, checkpoint='./ckpts/seedvr2_ema_3b.pth') |
|
|
self.runner.configure_vae_model() |
|
|
|
|
|
if hasattr(self.runner.vae, "set_memory_limit"): |
|
|
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit) |
|
|
|
|
|
self.is_initialized = True |
|
|
logger.info("Runner do SeedVR2 inicializado e pronto.") |
|
|
|
|
|
def _unload_runner(self): |
|
|
"""Remove o runner da VRAM para liberar recursos.""" |
|
|
if self.runner is not None: |
|
|
del self.runner |
|
|
self.runner = None |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
self.is_initialized = False |
|
|
logger.info("Runner do SeedVR2 descarregado da VRAM.") |
|
|
|
|
|
def process_video(self, input_video_path: str, output_video_path: str, prompt: str, seed: int = 666, fps_out: int = 24) -> str: |
|
|
"""Aplica o aprimoramento HD a um vídeo usando a lógica oficial do SeedVR.""" |
|
|
try: |
|
|
self._initialize_runner() |
|
|
set_seed(seed, same_across_ranks=True) |
|
|
|
|
|
|
|
|
finally: |
|
|
self._unload_runner() |
|
|
|
|
|
|
|
|
hd_specialist_singleton = HDSpecialist() |