|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
|
from typing import List, Optional, Tuple, Union, Callable |
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from common.cache import Cache |
|
|
from common.distributed.ops import slice_inputs |
|
|
|
|
|
from . import na |
|
|
from .embedding import TimeEmbedding |
|
|
from .modulation import get_ada_layer |
|
|
from .nablocks import get_nablock |
|
|
from .normalization import get_norm_layer |
|
|
from .patch import get_na_patch_layers |
|
|
|
|
|
|
|
|
def gradient_checkpointing(module: Union[Callable, nn.Module], *args, enabled: bool, **kwargs): |
|
|
return module(*args, **kwargs) |
|
|
|
|
|
@dataclass |
|
|
class NaDiTOutput: |
|
|
vid_sample: torch.Tensor |
|
|
|
|
|
|
|
|
class NaDiT(nn.Module): |
|
|
""" |
|
|
Native Resolution Diffusion Transformer (NaDiT) |
|
|
""" |
|
|
|
|
|
gradient_checkpointing = False |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vid_in_channels: int, |
|
|
vid_out_channels: int, |
|
|
vid_dim: int, |
|
|
txt_in_dim: Union[int, List[int]], |
|
|
txt_dim: Optional[int], |
|
|
emb_dim: int, |
|
|
heads: int, |
|
|
head_dim: int, |
|
|
expand_ratio: int, |
|
|
norm: Optional[str], |
|
|
norm_eps: float, |
|
|
ada: str, |
|
|
qk_bias: bool, |
|
|
qk_norm: Optional[str], |
|
|
patch_size: Union[int, Tuple[int, int, int]], |
|
|
num_layers: int, |
|
|
block_type: Union[str, Tuple[str]], |
|
|
mm_layers: Union[int, Tuple[bool]], |
|
|
mlp_type: str = "normal", |
|
|
patch_type: str = "v1", |
|
|
rope_type: Optional[str] = "rope3d", |
|
|
rope_dim: Optional[int] = None, |
|
|
window: Optional[Tuple] = None, |
|
|
window_method: Optional[Tuple[str]] = None, |
|
|
msa_type: Optional[Tuple[str]] = None, |
|
|
mca_type: Optional[Tuple[str]] = None, |
|
|
txt_in_norm: Optional[str] = None, |
|
|
txt_in_norm_scale_factor: int = 0.01, |
|
|
txt_proj_type: Optional[str] = "linear", |
|
|
vid_out_norm: Optional[str] = None, |
|
|
**kwargs, |
|
|
): |
|
|
ada = get_ada_layer(ada) |
|
|
norm = get_norm_layer(norm) |
|
|
qk_norm = get_norm_layer(qk_norm) |
|
|
rope_dim = rope_dim if rope_dim is not None else head_dim // 2 |
|
|
if isinstance(block_type, str): |
|
|
block_type = [block_type] * num_layers |
|
|
elif len(block_type) != num_layers: |
|
|
raise ValueError("The ``block_type`` list should equal to ``num_layers``.") |
|
|
super().__init__() |
|
|
NaPatchIn, NaPatchOut = get_na_patch_layers(patch_type) |
|
|
self.vid_in = NaPatchIn( |
|
|
in_channels=vid_in_channels, |
|
|
patch_size=patch_size, |
|
|
dim=vid_dim, |
|
|
) |
|
|
if not isinstance(txt_in_dim, int): |
|
|
self.txt_in = nn.ModuleList([]) |
|
|
for in_dim in txt_in_dim: |
|
|
txt_norm_layer = get_norm_layer(txt_in_norm)(txt_dim, norm_eps, True) |
|
|
if txt_proj_type == "linear": |
|
|
txt_proj_layer = nn.Linear(in_dim, txt_dim) |
|
|
else: |
|
|
txt_proj_layer = nn.Sequential( |
|
|
nn.Linear(in_dim, in_dim), nn.GELU("tanh"), nn.Linear(in_dim, txt_dim) |
|
|
) |
|
|
torch.nn.init.constant_(txt_norm_layer.weight, txt_in_norm_scale_factor) |
|
|
self.txt_in.append( |
|
|
nn.Sequential( |
|
|
txt_proj_layer, |
|
|
txt_norm_layer, |
|
|
) |
|
|
) |
|
|
else: |
|
|
self.txt_in = ( |
|
|
nn.Linear(txt_in_dim, txt_dim) |
|
|
if txt_in_dim and txt_in_dim != txt_dim |
|
|
else nn.Identity() |
|
|
) |
|
|
self.emb_in = TimeEmbedding( |
|
|
sinusoidal_dim=256, |
|
|
hidden_dim=max(vid_dim, txt_dim), |
|
|
output_dim=emb_dim, |
|
|
) |
|
|
|
|
|
if window is None or isinstance(window[0], int): |
|
|
window = [window] * num_layers |
|
|
if window_method is None or isinstance(window_method, str): |
|
|
window_method = [window_method] * num_layers |
|
|
|
|
|
if msa_type is None or isinstance(msa_type, str): |
|
|
msa_type = [msa_type] * num_layers |
|
|
if mca_type is None or isinstance(mca_type, str): |
|
|
mca_type = [mca_type] * num_layers |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
|
[ |
|
|
get_nablock(block_type[i])( |
|
|
vid_dim=vid_dim, |
|
|
txt_dim=txt_dim, |
|
|
emb_dim=emb_dim, |
|
|
heads=heads, |
|
|
head_dim=head_dim, |
|
|
expand_ratio=expand_ratio, |
|
|
norm=norm, |
|
|
norm_eps=norm_eps, |
|
|
ada=ada, |
|
|
qk_bias=qk_bias, |
|
|
qk_norm=qk_norm, |
|
|
shared_weights=not ( |
|
|
(i < mm_layers) if isinstance(mm_layers, int) else mm_layers[i] |
|
|
), |
|
|
mlp_type=mlp_type, |
|
|
window=window[i], |
|
|
window_method=window_method[i], |
|
|
msa_type=msa_type[i], |
|
|
mca_type=mca_type[i], |
|
|
rope_type=rope_type, |
|
|
rope_dim=rope_dim, |
|
|
is_last_layer=(i == num_layers - 1), |
|
|
**kwargs, |
|
|
) |
|
|
for i in range(num_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
self.vid_out_norm = None |
|
|
if vid_out_norm is not None: |
|
|
self.vid_out_norm = get_norm_layer(vid_out_norm)( |
|
|
dim=vid_dim, |
|
|
eps=norm_eps, |
|
|
elementwise_affine=True, |
|
|
) |
|
|
self.vid_out_ada = ada( |
|
|
dim=vid_dim, |
|
|
emb_dim=emb_dim, |
|
|
layers=["out"], |
|
|
modes=["in"], |
|
|
) |
|
|
|
|
|
self.vid_out = NaPatchOut( |
|
|
out_channels=vid_out_channels, |
|
|
patch_size=patch_size, |
|
|
dim=vid_dim, |
|
|
) |
|
|
|
|
|
def set_gradient_checkpointing(self, enable: bool): |
|
|
self.gradient_checkpointing = enable |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
vid: torch.FloatTensor, |
|
|
txt: Union[torch.FloatTensor, List[torch.FloatTensor]], |
|
|
vid_shape: torch.LongTensor, |
|
|
txt_shape: Union[torch.LongTensor, List[torch.LongTensor]], |
|
|
timestep: Union[int, float, torch.IntTensor, torch.FloatTensor], |
|
|
disable_cache: bool = False, |
|
|
): |
|
|
cache = Cache(disable=disable_cache) |
|
|
|
|
|
|
|
|
if isinstance(txt, list): |
|
|
assert isinstance(self.txt_in, nn.ModuleList) |
|
|
txt = [ |
|
|
na.unflatten(fc(i), s) for fc, i, s in zip(self.txt_in, txt, txt_shape) |
|
|
] |
|
|
txt, txt_shape = na.flatten([torch.cat(t, dim=0) for t in zip(*txt)]) |
|
|
txt = slice_inputs(txt, dim=0) |
|
|
else: |
|
|
txt = slice_inputs(txt, dim=0) |
|
|
txt = self.txt_in(txt) |
|
|
|
|
|
|
|
|
|
|
|
vid, vid_shape = self.vid_in(vid, vid_shape, cache) |
|
|
|
|
|
|
|
|
emb = self.emb_in(timestep, device=vid.device, dtype=vid.dtype) |
|
|
|
|
|
|
|
|
for i, block in enumerate(self.blocks): |
|
|
vid, txt, vid_shape, txt_shape = gradient_checkpointing( |
|
|
enabled=(self.gradient_checkpointing and self.training), |
|
|
module=block, |
|
|
vid=vid, |
|
|
txt=txt, |
|
|
vid_shape=vid_shape, |
|
|
txt_shape=txt_shape, |
|
|
emb=emb, |
|
|
cache=cache, |
|
|
) |
|
|
|
|
|
|
|
|
if self.vid_out_norm: |
|
|
vid = self.vid_out_norm(vid) |
|
|
vid = self.vid_out_ada( |
|
|
vid, |
|
|
emb=emb, |
|
|
layer="out", |
|
|
mode="in", |
|
|
hid_len=cache("vid_len", lambda: vid_shape.prod(-1)), |
|
|
cache=cache, |
|
|
branch_tag="vid", |
|
|
) |
|
|
|
|
|
|
|
|
vid, vid_shape = self.vid_out(vid, vid_shape, cache) |
|
|
return NaDiTOutput(vid_sample=vid) |
|
|
|