Carlexxx
commited on
Commit
·
0344c73
1
Parent(s):
05f2657
feat: Implement self-contained specialist managers
Browse files- common/README.md +138 -0
- common/__init__.py +0 -0
- common/cache.py +47 -0
- common/config.py +110 -0
- common/decorators.py +147 -0
- common/diffusion/__init__.py +56 -0
- common/diffusion/config.py +74 -0
- common/diffusion/samplers/base.py +108 -0
- common/diffusion/samplers/euler.py +89 -0
- common/diffusion/schedules/base.py +131 -0
- common/diffusion/schedules/lerp.py +55 -0
- common/diffusion/timesteps/base.py +72 -0
- common/diffusion/timesteps/sampling/trailing.py +49 -0
- common/diffusion/types.py +59 -0
- common/diffusion/utils.py +84 -0
- common/distributed/__init__.py +37 -0
- common/distributed/advanced.py +208 -0
- common/distributed/basic.py +84 -0
- common/distributed/meta_init_utils.py +41 -0
- common/distributed/ops.py +494 -0
- common/logger.py +44 -0
- common/partition.py +59 -0
- common/seed.py +30 -0
- common/utils.py +232 -0
common/README.md
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🛠️ helpers/ - Ferramentas de IA de Terceiros Adaptadas para ADUC-SDR
|
| 2 |
+
|
| 3 |
+
Esta pasta contém implementações adaptadas de modelos e utilitários de IA de terceiros, que servem como "especialistas" ou "ferramentas" de baixo nível para a arquitetura ADUC-SDR.
|
| 4 |
+
|
| 5 |
+
**IMPORTANTE:** O conteúdo desta pasta é de autoria de seus respectivos idealizadores e desenvolvedores originais. Esta pasta **NÃO FAZ PARTE** do projeto principal ADUC-SDR em termos de sua arquitetura inovadora. Ela serve como um repositório para as **dependências diretas e modificadas** que os `DeformesXDEngines` (os estágios do "foguete" ADUC-SDR) invocam para realizar tarefas específicas (geração de imagem, vídeo, áudio).
|
| 6 |
+
|
| 7 |
+
As modificações realizadas nos arquivos aqui presentes visam principalmente:
|
| 8 |
+
1. **Adaptação de Interfaces:** Padronizar as interfaces para que se encaixem no fluxo de orquestração do ADUC-SDR.
|
| 9 |
+
2. **Gerenciamento de Recursos:** Integrar lógicas de carregamento/descarregamento de modelos (GPU management) e configurações via arquivos YAML.
|
| 10 |
+
3. **Otimização de Fluxo:** Ajustar as pipelines para aceitar formatos de entrada mais eficientes (ex: tensores pré-codificados em vez de caminhos de mídia, pulando etapas de codificação/decodificação redundantes).
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
## 📄 Licenciamento
|
| 15 |
+
|
| 16 |
+
O conteúdo original dos projetos listados abaixo é licenciado sob a **Licença Apache 2.0**, ou outra licença especificada pelos autores originais. Todas as modificações e o uso desses arquivos dentro da estrutura `helpers/` do projeto ADUC-SDR estão em conformidade com os termos da **Licença Apache 2.0**.
|
| 17 |
+
|
| 18 |
+
As licenças originais dos projetos podem ser encontradas nas suas respectivas fontes ou nos subdiretórios `incl_licenses/` dentro de cada módulo adaptado.
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## 🛠️ API dos Helpers e Guia de Uso
|
| 23 |
+
|
| 24 |
+
Esta seção detalha como cada helper (agente especialista) deve ser utilizado dentro do ecossistema ADUC-SDR. Todos os agentes são instanciados como **singletons** no `hardware_manager.py` para garantir o gerenciamento centralizado de recursos de GPU.
|
| 25 |
+
|
| 26 |
+
### **gemini_helpers.py (GeminiAgent)**
|
| 27 |
+
|
| 28 |
+
* **Propósito:** Atua como o "Oráculo de Síntese Adaptativo", responsável por todas as tarefas de processamento de linguagem natural, como criação de storyboards, geração de prompts, e tomada de decisões narrativas.
|
| 29 |
+
* **Singleton Instance:** `gemini_agent_singleton`
|
| 30 |
+
* **Construtor:** `GeminiAgent()`
|
| 31 |
+
* Lê `configs/gemini_config.yaml` para obter o nome do modelo, parâmetros de inferência e caminhos de templates de prompt. A chave da API é lida da variável de ambiente `GEMINI_API_KEY`.
|
| 32 |
+
* **Métodos Públicos:**
|
| 33 |
+
* `generate_storyboard(prompt: str, num_keyframes: int, ref_image_paths: list[str])`
|
| 34 |
+
* **Inputs:**
|
| 35 |
+
* `prompt`: A ideia geral do filme (string).
|
| 36 |
+
* `num_keyframes`: O número de cenas a serem geradas (int).
|
| 37 |
+
* `ref_image_paths`: Lista de caminhos para as imagens de referência (list[str]).
|
| 38 |
+
* **Output:** `tuple[list[str], str]` (Uma tupla contendo a lista de strings do storyboard e um relatório textual da operação).
|
| 39 |
+
* `select_keyframes_from_pool(storyboard: list, base_image_paths: list[str], pool_image_paths: list[str])`
|
| 40 |
+
* **Inputs:**
|
| 41 |
+
* `storyboard`: A lista de strings do storyboard gerado.
|
| 42 |
+
* `base_image_paths`: Imagens de referência base (list[str]).
|
| 43 |
+
* `pool_image_paths`: O "banco de imagens" de onde selecionar (list[str]).
|
| 44 |
+
* **Output:** `tuple[list[str], str]` (Uma tupla contendo a lista de caminhos de imagens selecionadas e um relatório textual).
|
| 45 |
+
* `get_anticipatory_keyframe_prompt(...)`
|
| 46 |
+
* **Inputs:** Contexto narrativo e visual para gerar um prompt de imagem.
|
| 47 |
+
* **Output:** `tuple[str, str]` (Uma tupla contendo o prompt gerado para o modelo de imagem e um relatório textual).
|
| 48 |
+
* `get_initial_motion_prompt(...)`
|
| 49 |
+
* **Inputs:** Contexto narrativo e visual para a primeira transição de vídeo.
|
| 50 |
+
* **Output:** `tuple[str, str]` (Uma tupla contendo o prompt de movimento gerado e um relatório textual).
|
| 51 |
+
* `get_transition_decision(...)`
|
| 52 |
+
* **Inputs:** Contexto narrativo e visual para uma transição de vídeo intermediária.
|
| 53 |
+
* **Output:** `tuple[dict, str]` (Uma tupla contendo um dicionário `{"transition_type": "...", "motion_prompt": "..."}` e um relatório textual).
|
| 54 |
+
* `generate_audio_prompts(...)`
|
| 55 |
+
* **Inputs:** Contexto narrativo global.
|
| 56 |
+
* **Output:** `tuple[dict, str]` (Uma tupla contendo um dicionário `{"music_prompt": "...", "sfx_prompt": "..."}` e um relatório textual).
|
| 57 |
+
|
| 58 |
+
### **flux_kontext_helpers.py (FluxPoolManager)**
|
| 59 |
+
|
| 60 |
+
* **Propósito:** Especialista em geração de imagens de alta qualidade (keyframes) usando a pipeline FluxKontext. Gerencia um pool de workers para otimizar o uso de múltiplas GPUs.
|
| 61 |
+
* **Singleton Instance:** `flux_kontext_singleton`
|
| 62 |
+
* **Construtor:** `FluxPoolManager(device_ids: list[str], flux_config_file: str)`
|
| 63 |
+
* Lê `configs/flux_config.yaml`.
|
| 64 |
+
* **Método Público:**
|
| 65 |
+
* `generate_image(prompt: str, reference_images: list[Image.Image], width: int, height: int, seed: int = 42, callback: callable = None)`
|
| 66 |
+
* **Inputs:**
|
| 67 |
+
* `prompt`: Prompt textual para guiar a geração (string).
|
| 68 |
+
* `reference_images`: Lista de objetos `PIL.Image` como referência visual.
|
| 69 |
+
* `width`, `height`: Dimensões da imagem de saída (int).
|
| 70 |
+
* `seed`: Semente para reprodutibilidade (int).
|
| 71 |
+
* `callback`: Função de callback opcional para monitorar o progresso.
|
| 72 |
+
* **Output:** `PIL.Image.Image` (O objeto da imagem gerada).
|
| 73 |
+
|
| 74 |
+
### **dreamo_helpers.py (DreamOAgent)**
|
| 75 |
+
|
| 76 |
+
* **Propósito:** Especialista em geração de imagens de alta qualidade (keyframes) usando a pipeline DreamO, com capacidades avançadas de edição e estilo a partir de referências.
|
| 77 |
+
* **Singleton Instance:** `dreamo_agent_singleton`
|
| 78 |
+
* **Construtor:** `DreamOAgent(device_id: str = None)`
|
| 79 |
+
* Lê `configs/dreamo_config.yaml`.
|
| 80 |
+
* **Método Público:**
|
| 81 |
+
* `generate_image(prompt: str, reference_images: list[Image.Image], width: int, height: int)`
|
| 82 |
+
* **Inputs:**
|
| 83 |
+
* `prompt`: Prompt textual para guiar a geração (string).
|
| 84 |
+
* `reference_images`: Lista de objetos `PIL.Image` como referência visual. A lógica interna atribui a primeira imagem como `style` e as demais como `ip`.
|
| 85 |
+
* `width`, `height`: Dimensões da imagem de saída (int).
|
| 86 |
+
* **Output:** `PIL.Image.Image` (O objeto da imagem gerada).
|
| 87 |
+
|
| 88 |
+
### **ltx_manager_helpers.py (LtxPoolManager)**
|
| 89 |
+
|
| 90 |
+
* **Propósito:** Especialista na geração de fragmentos de vídeo no espaço latente usando a pipeline LTX-Video. Gerencia um pool de workers para otimizar o uso de múltiplas GPUs.
|
| 91 |
+
* **Singleton Instance:** `ltx_manager_singleton`
|
| 92 |
+
* **Construtor:** `LtxPoolManager(device_ids: list[str], ltx_model_config_file: str, ltx_global_config_file: str)`
|
| 93 |
+
* Lê o `ltx_global_config_file` e o `ltx_model_config_file` para configurar a pipeline.
|
| 94 |
+
* **Método Público:**
|
| 95 |
+
* `generate_latent_fragment(**kwargs)`
|
| 96 |
+
* **Inputs:** Dicionário de keyword arguments (`kwargs`) contendo todos os parâmetros da pipeline LTX, incluindo:
|
| 97 |
+
* `height`, `width`: Dimensões do vídeo (int).
|
| 98 |
+
* `video_total_frames`: Número total de frames a serem gerados (int).
|
| 99 |
+
* `video_fps`: Frames por segundo (int).
|
| 100 |
+
* `motion_prompt`: Prompt de movimento (string).
|
| 101 |
+
* `conditioning_items_data`: Lista de objetos `LatentConditioningItem` contendo os tensores latentes de condição.
|
| 102 |
+
* `guidance_scale`, `stg_scale`, `num_inference_steps`, etc.
|
| 103 |
+
* **Output:** `tuple[torch.Tensor, tuple]` (Uma tupla contendo o tensor latente gerado e os valores de padding utilizados).
|
| 104 |
+
|
| 105 |
+
### **mmaudio_helper.py (MMAudioAgent)**
|
| 106 |
+
|
| 107 |
+
* **Propósito:** Especialista em geração de áudio para um determinado fragmento de vídeo.
|
| 108 |
+
* **Singleton Instance:** `mmaudio_agent_singleton`
|
| 109 |
+
* **Construtor:** `MMAudioAgent(workspace_dir: str, device_id: str = None, mmaudio_config_file: str)`
|
| 110 |
+
* Lê `configs/mmaudio_config.yaml`.
|
| 111 |
+
* **Método Público:**
|
| 112 |
+
* `generate_audio_for_video(video_path: str, prompt: str, negative_prompt: str, duration_seconds: float)`
|
| 113 |
+
* **Inputs:**
|
| 114 |
+
* `video_path`: Caminho para o arquivo de vídeo silencioso (string).
|
| 115 |
+
* `prompt`: Prompt textual para guiar a geração de áudio (string).
|
| 116 |
+
* `negative_prompt`: Prompt negativo para áudio (string).
|
| 117 |
+
* `duration_seconds`: Duração exata do vídeo (float).
|
| 118 |
+
* **Output:** `str` (O caminho para o novo arquivo de vídeo com a faixa de áudio integrada).
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
### https://huggingface.co/spaces/ByteDance-Seed/SeedVR2-3B/tree/main
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## 🔗 Projetos Originais e Atribuições
|
| 126 |
+
(A seção de atribuições e licenças permanece a mesma que definimos anteriormente)
|
| 127 |
+
|
| 128 |
+
### DreamO
|
| 129 |
+
* **Repositório Original:** [https://github.com/bytedance/DreamO](https://github.com/bytedance/DreamO)
|
| 130 |
+
...
|
| 131 |
+
|
| 132 |
+
### LTX-Video
|
| 133 |
+
* **Repositório Original:** [https://github.com/Lightricks/LTX-Video](https://github.com/Lightricks/LTX-Video)
|
| 134 |
+
...
|
| 135 |
+
|
| 136 |
+
### MMAudio
|
| 137 |
+
* **Repositório Original:** [https://github.com/hkchengrex/MMAudio](https://github.com/hkchengrex/MMAudio)
|
| 138 |
+
...
|
common/__init__.py
ADDED
|
File without changes
|
common/cache.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Callable
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Cache:
|
| 19 |
+
"""Caching reusable args for faster inference"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, disable=False, prefix="", cache=None):
|
| 22 |
+
self.cache = cache if cache is not None else {}
|
| 23 |
+
self.disable = disable
|
| 24 |
+
self.prefix = prefix
|
| 25 |
+
|
| 26 |
+
def __call__(self, key: str, fn: Callable):
|
| 27 |
+
if self.disable:
|
| 28 |
+
return fn()
|
| 29 |
+
|
| 30 |
+
key = self.prefix + key
|
| 31 |
+
try:
|
| 32 |
+
result = self.cache[key]
|
| 33 |
+
except KeyError:
|
| 34 |
+
result = fn()
|
| 35 |
+
self.cache[key] = result
|
| 36 |
+
return result
|
| 37 |
+
|
| 38 |
+
def namespace(self, namespace: str):
|
| 39 |
+
return Cache(
|
| 40 |
+
disable=self.disable,
|
| 41 |
+
prefix=self.prefix + namespace + ".",
|
| 42 |
+
cache=self.cache,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
def get(self, key: str):
|
| 46 |
+
key = self.prefix + key
|
| 47 |
+
return self.cache[key]
|
common/config.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Configuration utility functions
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import importlib
|
| 20 |
+
from typing import Any, Callable, List, Union
|
| 21 |
+
from omegaconf import DictConfig, ListConfig, OmegaConf
|
| 22 |
+
|
| 23 |
+
OmegaConf.register_new_resolver("eval", eval)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_config(path: str, argv: List[str] = None) -> Union[DictConfig, ListConfig]:
|
| 27 |
+
"""
|
| 28 |
+
Load a configuration. Will resolve inheritance.
|
| 29 |
+
"""
|
| 30 |
+
config = OmegaConf.load(path)
|
| 31 |
+
if argv is not None:
|
| 32 |
+
config_argv = OmegaConf.from_dotlist(argv)
|
| 33 |
+
config = OmegaConf.merge(config, config_argv)
|
| 34 |
+
config = resolve_recursive(config, resolve_inheritance)
|
| 35 |
+
return config
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def resolve_recursive(
|
| 39 |
+
config: Any,
|
| 40 |
+
resolver: Callable[[Union[DictConfig, ListConfig]], Union[DictConfig, ListConfig]],
|
| 41 |
+
) -> Any:
|
| 42 |
+
config = resolver(config)
|
| 43 |
+
if isinstance(config, DictConfig):
|
| 44 |
+
for k in config.keys():
|
| 45 |
+
v = config.get(k)
|
| 46 |
+
if isinstance(v, (DictConfig, ListConfig)):
|
| 47 |
+
config[k] = resolve_recursive(v, resolver)
|
| 48 |
+
if isinstance(config, ListConfig):
|
| 49 |
+
for i in range(len(config)):
|
| 50 |
+
v = config.get(i)
|
| 51 |
+
if isinstance(v, (DictConfig, ListConfig)):
|
| 52 |
+
config[i] = resolve_recursive(v, resolver)
|
| 53 |
+
return config
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def resolve_inheritance(config: Union[DictConfig, ListConfig]) -> Any:
|
| 57 |
+
"""
|
| 58 |
+
Recursively resolve inheritance if the config contains:
|
| 59 |
+
__inherit__: path/to/parent.yaml or a ListConfig of such paths.
|
| 60 |
+
"""
|
| 61 |
+
if isinstance(config, DictConfig):
|
| 62 |
+
inherit = config.pop("__inherit__", None)
|
| 63 |
+
|
| 64 |
+
if inherit:
|
| 65 |
+
inherit_list = inherit if isinstance(inherit, ListConfig) else [inherit]
|
| 66 |
+
|
| 67 |
+
parent_config = None
|
| 68 |
+
for parent_path in inherit_list:
|
| 69 |
+
assert isinstance(parent_path, str)
|
| 70 |
+
parent_config = (
|
| 71 |
+
load_config(parent_path)
|
| 72 |
+
if parent_config is None
|
| 73 |
+
else OmegaConf.merge(parent_config, load_config(parent_path))
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if len(config.keys()) > 0:
|
| 77 |
+
config = OmegaConf.merge(parent_config, config)
|
| 78 |
+
else:
|
| 79 |
+
config = parent_config
|
| 80 |
+
return config
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def import_item(path: str, name: str) -> Any:
|
| 84 |
+
"""
|
| 85 |
+
Import a python item. Example: import_item("path.to.file", "MyClass") -> MyClass
|
| 86 |
+
"""
|
| 87 |
+
return getattr(importlib.import_module(path), name)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def create_object(config: DictConfig) -> Any:
|
| 91 |
+
"""
|
| 92 |
+
Create an object from config.
|
| 93 |
+
The config is expected to contains the following:
|
| 94 |
+
__object__:
|
| 95 |
+
path: path.to.module
|
| 96 |
+
name: MyClass
|
| 97 |
+
args: as_config | as_params (default to as_config)
|
| 98 |
+
"""
|
| 99 |
+
item = import_item(
|
| 100 |
+
path=config.__object__.path,
|
| 101 |
+
name=config.__object__.name,
|
| 102 |
+
)
|
| 103 |
+
args = config.__object__.get("args", "as_config")
|
| 104 |
+
if args == "as_config":
|
| 105 |
+
return item(config)
|
| 106 |
+
if args == "as_params":
|
| 107 |
+
config = OmegaConf.to_object(config)
|
| 108 |
+
config.pop("__object__")
|
| 109 |
+
return item(**config)
|
| 110 |
+
raise NotImplementedError(f"Unknown args type: {args}")
|
common/decorators.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Decorators.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import functools
|
| 20 |
+
import threading
|
| 21 |
+
import time
|
| 22 |
+
from typing import Callable
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
from common.distributed import barrier_if_distributed, get_global_rank, get_local_rank
|
| 26 |
+
from common.logger import get_logger
|
| 27 |
+
|
| 28 |
+
logger = get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def log_on_entry(func: Callable) -> Callable:
|
| 32 |
+
"""
|
| 33 |
+
Functions with this decorator will log the function name at entry.
|
| 34 |
+
When using multiple decorators, this must be applied innermost to properly capture the name.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def log_on_entry_wrapper(*args, **kwargs):
|
| 38 |
+
logger.info(f"Entering {func.__name__}")
|
| 39 |
+
return func(*args, **kwargs)
|
| 40 |
+
|
| 41 |
+
return log_on_entry_wrapper
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def barrier_on_entry(func: Callable) -> Callable:
|
| 45 |
+
"""
|
| 46 |
+
Functions with this decorator will start executing when all ranks are ready to enter.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
def barrier_on_entry_wrapper(*args, **kwargs):
|
| 50 |
+
barrier_if_distributed()
|
| 51 |
+
return func(*args, **kwargs)
|
| 52 |
+
|
| 53 |
+
return barrier_on_entry_wrapper
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _conditional_execute_wrapper_factory(execute: bool, func: Callable) -> Callable:
|
| 57 |
+
"""
|
| 58 |
+
Helper function for local_rank_zero_only and global_rank_zero_only.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def conditional_execute_wrapper(*args, **kwargs):
|
| 62 |
+
# Only execute if needed.
|
| 63 |
+
result = func(*args, **kwargs) if execute else None
|
| 64 |
+
# All GPUs must wait.
|
| 65 |
+
barrier_if_distributed()
|
| 66 |
+
# Return results.
|
| 67 |
+
return result
|
| 68 |
+
|
| 69 |
+
return conditional_execute_wrapper
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _asserted_wrapper_factory(condition: bool, func: Callable, err_msg: str = "") -> Callable:
|
| 73 |
+
"""
|
| 74 |
+
Helper function for some functions with special constraints,
|
| 75 |
+
especially functions called by other global_rank_zero_only / local_rank_zero_only ones,
|
| 76 |
+
in case they are wrongly invoked in other scenarios.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def asserted_execute_wrapper(*args, **kwargs):
|
| 80 |
+
assert condition, err_msg
|
| 81 |
+
result = func(*args, **kwargs)
|
| 82 |
+
return result
|
| 83 |
+
|
| 84 |
+
return asserted_execute_wrapper
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def local_rank_zero_only(func: Callable) -> Callable:
|
| 88 |
+
"""
|
| 89 |
+
Functions with this decorator will only execute on local rank zero.
|
| 90 |
+
"""
|
| 91 |
+
return _conditional_execute_wrapper_factory(get_local_rank() == 0, func)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def global_rank_zero_only(func: Callable) -> Callable:
|
| 95 |
+
"""
|
| 96 |
+
Functions with this decorator will only execute on global rank zero.
|
| 97 |
+
"""
|
| 98 |
+
return _conditional_execute_wrapper_factory(get_global_rank() == 0, func)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def assert_only_global_rank_zero(func: Callable) -> Callable:
|
| 102 |
+
"""
|
| 103 |
+
Functions with this decorator are only accessible to processes with global rank zero.
|
| 104 |
+
"""
|
| 105 |
+
return _asserted_wrapper_factory(
|
| 106 |
+
get_global_rank() == 0, func, err_msg="Not accessible to processes with global_rank != 0"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def assert_only_local_rank_zero(func: Callable) -> Callable:
|
| 111 |
+
"""
|
| 112 |
+
Functions with this decorator are only accessible to processes with local rank zero.
|
| 113 |
+
"""
|
| 114 |
+
return _asserted_wrapper_factory(
|
| 115 |
+
get_local_rank() == 0, func, err_msg="Not accessible to processes with local_rank != 0"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def new_thread(func: Callable) -> Callable:
|
| 120 |
+
"""
|
| 121 |
+
Functions with this decorator will run in a new thread.
|
| 122 |
+
The function will return the thread, which can be joined to wait for completion.
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
def new_thread_wrapper(*args, **kwargs):
|
| 126 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs)
|
| 127 |
+
thread.start()
|
| 128 |
+
return thread
|
| 129 |
+
|
| 130 |
+
return new_thread_wrapper
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def log_runtime(func: Callable) -> Callable:
|
| 134 |
+
"""
|
| 135 |
+
Functions with this decorator will logging the runtime.
|
| 136 |
+
"""
|
| 137 |
+
|
| 138 |
+
@functools.wraps(func)
|
| 139 |
+
def wrapped(*args, **kwargs):
|
| 140 |
+
torch.distributed.barrier()
|
| 141 |
+
start = time.perf_counter()
|
| 142 |
+
result = func(*args, **kwargs)
|
| 143 |
+
torch.distributed.barrier()
|
| 144 |
+
logger.info(f"Completed {func.__name__} in {time.perf_counter() - start:.3f} seconds.")
|
| 145 |
+
return result
|
| 146 |
+
|
| 147 |
+
return wrapped
|
common/diffusion/__init__.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Diffusion package.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from .config import (
|
| 20 |
+
create_sampler_from_config,
|
| 21 |
+
create_sampling_timesteps_from_config,
|
| 22 |
+
create_schedule_from_config,
|
| 23 |
+
)
|
| 24 |
+
from .samplers.base import Sampler
|
| 25 |
+
from .samplers.euler import EulerSampler
|
| 26 |
+
from .schedules.base import Schedule
|
| 27 |
+
from .schedules.lerp import LinearInterpolationSchedule
|
| 28 |
+
from .timesteps.base import SamplingTimesteps, Timesteps
|
| 29 |
+
from .timesteps.sampling.trailing import UniformTrailingSamplingTimesteps
|
| 30 |
+
from .types import PredictionType, SamplingDirection
|
| 31 |
+
from .utils import classifier_free_guidance, classifier_free_guidance_dispatcher, expand_dims
|
| 32 |
+
|
| 33 |
+
__all__ = [
|
| 34 |
+
# Configs
|
| 35 |
+
"create_sampler_from_config",
|
| 36 |
+
"create_sampling_timesteps_from_config",
|
| 37 |
+
"create_schedule_from_config",
|
| 38 |
+
# Schedules
|
| 39 |
+
"Schedule",
|
| 40 |
+
"DiscreteVariancePreservingSchedule",
|
| 41 |
+
"LinearInterpolationSchedule",
|
| 42 |
+
# Samplers
|
| 43 |
+
"Sampler",
|
| 44 |
+
"EulerSampler",
|
| 45 |
+
# Timesteps
|
| 46 |
+
"Timesteps",
|
| 47 |
+
"SamplingTimesteps",
|
| 48 |
+
# Types
|
| 49 |
+
"PredictionType",
|
| 50 |
+
"SamplingDirection",
|
| 51 |
+
"UniformTrailingSamplingTimesteps",
|
| 52 |
+
# Utils
|
| 53 |
+
"classifier_free_guidance",
|
| 54 |
+
"classifier_free_guidance_dispatcher",
|
| 55 |
+
"expand_dims",
|
| 56 |
+
]
|
common/diffusion/config.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Utility functions for creating schedules and samplers from config.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from omegaconf import DictConfig
|
| 21 |
+
|
| 22 |
+
from .samplers.base import Sampler
|
| 23 |
+
from .samplers.euler import EulerSampler
|
| 24 |
+
from .schedules.base import Schedule
|
| 25 |
+
from .schedules.lerp import LinearInterpolationSchedule
|
| 26 |
+
from .timesteps.base import SamplingTimesteps
|
| 27 |
+
from .timesteps.sampling.trailing import UniformTrailingSamplingTimesteps
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def create_schedule_from_config(
|
| 31 |
+
config: DictConfig,
|
| 32 |
+
device: torch.device,
|
| 33 |
+
dtype: torch.dtype = torch.float32,
|
| 34 |
+
) -> Schedule:
|
| 35 |
+
"""
|
| 36 |
+
Create a schedule from configuration.
|
| 37 |
+
"""
|
| 38 |
+
if config.type == "lerp":
|
| 39 |
+
return LinearInterpolationSchedule(T=config.get("T", 1.0))
|
| 40 |
+
|
| 41 |
+
raise NotImplementedError
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def create_sampler_from_config(
|
| 45 |
+
config: DictConfig,
|
| 46 |
+
schedule: Schedule,
|
| 47 |
+
timesteps: SamplingTimesteps,
|
| 48 |
+
) -> Sampler:
|
| 49 |
+
"""
|
| 50 |
+
Create a sampler from configuration.
|
| 51 |
+
"""
|
| 52 |
+
if config.type == "euler":
|
| 53 |
+
return EulerSampler(
|
| 54 |
+
schedule=schedule,
|
| 55 |
+
timesteps=timesteps,
|
| 56 |
+
prediction_type=config.prediction_type,
|
| 57 |
+
)
|
| 58 |
+
raise NotImplementedError
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def create_sampling_timesteps_from_config(
|
| 62 |
+
config: DictConfig,
|
| 63 |
+
schedule: Schedule,
|
| 64 |
+
device: torch.device,
|
| 65 |
+
dtype: torch.dtype = torch.float32,
|
| 66 |
+
) -> SamplingTimesteps:
|
| 67 |
+
if config.type == "uniform_trailing":
|
| 68 |
+
return UniformTrailingSamplingTimesteps(
|
| 69 |
+
T=schedule.T,
|
| 70 |
+
steps=config.steps,
|
| 71 |
+
shift=config.get("shift", 1.0),
|
| 72 |
+
device=device,
|
| 73 |
+
)
|
| 74 |
+
raise NotImplementedError
|
common/diffusion/samplers/base.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Sampler base class.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from abc import ABC, abstractmethod
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from typing import Callable
|
| 22 |
+
import torch
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
|
| 25 |
+
from ..schedules.base import Schedule
|
| 26 |
+
from ..timesteps.base import SamplingTimesteps
|
| 27 |
+
from ..types import PredictionType, SamplingDirection
|
| 28 |
+
from ..utils import assert_schedule_timesteps_compatible
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class SamplerModelArgs:
|
| 33 |
+
x_t: torch.Tensor
|
| 34 |
+
t: torch.Tensor
|
| 35 |
+
i: int
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class Sampler(ABC):
|
| 39 |
+
"""
|
| 40 |
+
Samplers are ODE/SDE solvers.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(
|
| 44 |
+
self,
|
| 45 |
+
schedule: Schedule,
|
| 46 |
+
timesteps: SamplingTimesteps,
|
| 47 |
+
prediction_type: PredictionType,
|
| 48 |
+
return_endpoint: bool = True,
|
| 49 |
+
):
|
| 50 |
+
assert_schedule_timesteps_compatible(
|
| 51 |
+
schedule=schedule,
|
| 52 |
+
timesteps=timesteps,
|
| 53 |
+
)
|
| 54 |
+
self.schedule = schedule
|
| 55 |
+
self.timesteps = timesteps
|
| 56 |
+
self.prediction_type = prediction_type
|
| 57 |
+
self.return_endpoint = return_endpoint
|
| 58 |
+
|
| 59 |
+
@abstractmethod
|
| 60 |
+
def sample(
|
| 61 |
+
self,
|
| 62 |
+
x: torch.Tensor,
|
| 63 |
+
f: Callable[[SamplerModelArgs], torch.Tensor],
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
+
"""
|
| 66 |
+
Generate a new sample given the the intial sample x and score function f.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
def get_next_timestep(
|
| 70 |
+
self,
|
| 71 |
+
t: torch.Tensor,
|
| 72 |
+
) -> torch.Tensor:
|
| 73 |
+
"""
|
| 74 |
+
Get the next sample timestep.
|
| 75 |
+
Support multiple different timesteps t in a batch.
|
| 76 |
+
If no more steps, return out of bound value -1 or T+1.
|
| 77 |
+
"""
|
| 78 |
+
T = self.timesteps.T
|
| 79 |
+
steps = len(self.timesteps)
|
| 80 |
+
curr_idx = self.timesteps.index(t)
|
| 81 |
+
next_idx = curr_idx + 1
|
| 82 |
+
bound = -1 if self.timesteps.direction == SamplingDirection.backward else T + 1
|
| 83 |
+
|
| 84 |
+
s = self.timesteps[next_idx.clamp_max(steps - 1)]
|
| 85 |
+
s = s.where(next_idx < steps, bound)
|
| 86 |
+
return s
|
| 87 |
+
|
| 88 |
+
def get_endpoint(
|
| 89 |
+
self,
|
| 90 |
+
pred: torch.Tensor,
|
| 91 |
+
x_t: torch.Tensor,
|
| 92 |
+
t: torch.Tensor,
|
| 93 |
+
) -> torch.Tensor:
|
| 94 |
+
"""
|
| 95 |
+
Get to the endpoint of the probability flow.
|
| 96 |
+
"""
|
| 97 |
+
x_0, x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t)
|
| 98 |
+
return x_0 if self.timesteps.direction == SamplingDirection.backward else x_T
|
| 99 |
+
|
| 100 |
+
def get_progress_bar(self):
|
| 101 |
+
"""
|
| 102 |
+
Get progress bar for sampling.
|
| 103 |
+
"""
|
| 104 |
+
return tqdm(
|
| 105 |
+
iterable=range(len(self.timesteps) - (0 if self.return_endpoint else 1)),
|
| 106 |
+
dynamic_ncols=True,
|
| 107 |
+
desc=self.__class__.__name__,
|
| 108 |
+
)
|
common/diffusion/samplers/euler.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
Euler ODE solver.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
from typing import Callable
|
| 21 |
+
import torch
|
| 22 |
+
from einops import rearrange
|
| 23 |
+
from torch.nn import functional as F
|
| 24 |
+
|
| 25 |
+
from models.dit_v2 import na
|
| 26 |
+
|
| 27 |
+
from ..types import PredictionType
|
| 28 |
+
from ..utils import expand_dims
|
| 29 |
+
from .base import Sampler, SamplerModelArgs
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class EulerSampler(Sampler):
|
| 33 |
+
"""
|
| 34 |
+
The Euler method is the simplest ODE solver.
|
| 35 |
+
<https://en.wikipedia.org/wiki/Euler_method>
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def sample(
|
| 39 |
+
self,
|
| 40 |
+
x: torch.Tensor,
|
| 41 |
+
f: Callable[[SamplerModelArgs], torch.Tensor],
|
| 42 |
+
) -> torch.Tensor:
|
| 43 |
+
timesteps = self.timesteps.timesteps
|
| 44 |
+
progress = self.get_progress_bar()
|
| 45 |
+
i = 0
|
| 46 |
+
for t, s in zip(timesteps[:-1], timesteps[1:]):
|
| 47 |
+
pred = f(SamplerModelArgs(x, t, i))
|
| 48 |
+
x = self.step_to(pred, x, t, s)
|
| 49 |
+
i += 1
|
| 50 |
+
progress.update()
|
| 51 |
+
|
| 52 |
+
if self.return_endpoint:
|
| 53 |
+
t = timesteps[-1]
|
| 54 |
+
pred = f(SamplerModelArgs(x, t, i))
|
| 55 |
+
x = self.get_endpoint(pred, x, t)
|
| 56 |
+
progress.update()
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
def step(
|
| 60 |
+
self,
|
| 61 |
+
pred: torch.Tensor,
|
| 62 |
+
x_t: torch.Tensor,
|
| 63 |
+
t: torch.Tensor,
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
+
"""
|
| 66 |
+
Step to the next timestep.
|
| 67 |
+
"""
|
| 68 |
+
return self.step_to(pred, x_t, t, self.get_next_timestep(t))
|
| 69 |
+
|
| 70 |
+
def step_to(
|
| 71 |
+
self,
|
| 72 |
+
pred: torch.Tensor,
|
| 73 |
+
x_t: torch.Tensor,
|
| 74 |
+
t: torch.Tensor,
|
| 75 |
+
s: torch.Tensor,
|
| 76 |
+
) -> torch.Tensor:
|
| 77 |
+
"""
|
| 78 |
+
Steps from x_t at timestep t to x_s at timestep s. Returns x_s.
|
| 79 |
+
"""
|
| 80 |
+
t = expand_dims(t, x_t.ndim)
|
| 81 |
+
s = expand_dims(s, x_t.ndim)
|
| 82 |
+
T = self.schedule.T
|
| 83 |
+
# Step from x_t to x_s.
|
| 84 |
+
pred_x_0, pred_x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t)
|
| 85 |
+
pred_x_s = self.schedule.forward(pred_x_0, pred_x_T, s.clamp(0, T))
|
| 86 |
+
# Clamp x_s to x_0 and x_T if s is out of bound.
|
| 87 |
+
pred_x_s = pred_x_s.where(s >= 0, pred_x_0)
|
| 88 |
+
pred_x_s = pred_x_s.where(s <= T, pred_x_T)
|
| 89 |
+
return pred_x_s
|
common/diffusion/schedules/base.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Schedule base class.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from abc import ABC, abstractmethod, abstractproperty
|
| 20 |
+
from typing import Tuple, Union
|
| 21 |
+
import torch
|
| 22 |
+
|
| 23 |
+
from ..types import PredictionType
|
| 24 |
+
from ..utils import expand_dims
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Schedule(ABC):
|
| 28 |
+
"""
|
| 29 |
+
Diffusion schedules are uniquely defined by T, A, B:
|
| 30 |
+
|
| 31 |
+
x_t = A(t) * x_0 + B(t) * x_T, where t in [0, T]
|
| 32 |
+
|
| 33 |
+
Schedules can be continuous or discrete.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
@abstractproperty
|
| 37 |
+
def T(self) -> Union[int, float]:
|
| 38 |
+
"""
|
| 39 |
+
Maximum timestep inclusive.
|
| 40 |
+
Schedule is continuous if float, discrete if int.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
@abstractmethod
|
| 44 |
+
def A(self, t: torch.Tensor) -> torch.Tensor:
|
| 45 |
+
"""
|
| 46 |
+
Interpolation coefficient A.
|
| 47 |
+
Returns tensor with the same shape as t.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
@abstractmethod
|
| 51 |
+
def B(self, t: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
"""
|
| 53 |
+
Interpolation coefficient B.
|
| 54 |
+
Returns tensor with the same shape as t.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
# ----------------------------------------------------
|
| 58 |
+
|
| 59 |
+
def snr(self, t: torch.Tensor) -> torch.Tensor:
|
| 60 |
+
"""
|
| 61 |
+
Signal to noise ratio.
|
| 62 |
+
Returns tensor with the same shape as t.
|
| 63 |
+
"""
|
| 64 |
+
return (self.A(t) ** 2) / (self.B(t) ** 2)
|
| 65 |
+
|
| 66 |
+
def isnr(self, snr: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
"""
|
| 68 |
+
Inverse signal to noise ratio.
|
| 69 |
+
Returns tensor with the same shape as snr.
|
| 70 |
+
Subclass may implement.
|
| 71 |
+
"""
|
| 72 |
+
raise NotImplementedError
|
| 73 |
+
|
| 74 |
+
# ----------------------------------------------------
|
| 75 |
+
|
| 76 |
+
def is_continuous(self) -> bool:
|
| 77 |
+
"""
|
| 78 |
+
Whether the schedule is continuous.
|
| 79 |
+
"""
|
| 80 |
+
return isinstance(self.T, float)
|
| 81 |
+
|
| 82 |
+
def forward(self, x_0: torch.Tensor, x_T: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
| 83 |
+
"""
|
| 84 |
+
Diffusion forward function.
|
| 85 |
+
"""
|
| 86 |
+
t = expand_dims(t, x_0.ndim)
|
| 87 |
+
return self.A(t) * x_0 + self.B(t) * x_T
|
| 88 |
+
|
| 89 |
+
def convert_from_pred(
|
| 90 |
+
self, pred: torch.Tensor, pred_type: PredictionType, x_t: torch.Tensor, t: torch.Tensor
|
| 91 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 92 |
+
"""
|
| 93 |
+
Convert from prediction. Return predicted x_0 and x_T.
|
| 94 |
+
"""
|
| 95 |
+
t = expand_dims(t, x_t.ndim)
|
| 96 |
+
A_t = self.A(t)
|
| 97 |
+
B_t = self.B(t)
|
| 98 |
+
|
| 99 |
+
if pred_type == PredictionType.x_T:
|
| 100 |
+
pred_x_T = pred
|
| 101 |
+
pred_x_0 = (x_t - B_t * pred_x_T) / A_t
|
| 102 |
+
elif pred_type == PredictionType.x_0:
|
| 103 |
+
pred_x_0 = pred
|
| 104 |
+
pred_x_T = (x_t - A_t * pred_x_0) / B_t
|
| 105 |
+
elif pred_type == PredictionType.v_cos:
|
| 106 |
+
pred_x_0 = A_t * x_t - B_t * pred
|
| 107 |
+
pred_x_T = A_t * pred + B_t * x_t
|
| 108 |
+
elif pred_type == PredictionType.v_lerp:
|
| 109 |
+
pred_x_0 = (x_t - B_t * pred) / (A_t + B_t)
|
| 110 |
+
pred_x_T = (x_t + A_t * pred) / (A_t + B_t)
|
| 111 |
+
else:
|
| 112 |
+
raise NotImplementedError
|
| 113 |
+
|
| 114 |
+
return pred_x_0, pred_x_T
|
| 115 |
+
|
| 116 |
+
def convert_to_pred(
|
| 117 |
+
self, x_0: torch.Tensor, x_T: torch.Tensor, t: torch.Tensor, pred_type: PredictionType
|
| 118 |
+
) -> torch.FloatTensor:
|
| 119 |
+
"""
|
| 120 |
+
Convert to prediction target given x_0 and x_T.
|
| 121 |
+
"""
|
| 122 |
+
if pred_type == PredictionType.x_T:
|
| 123 |
+
return x_T
|
| 124 |
+
if pred_type == PredictionType.x_0:
|
| 125 |
+
return x_0
|
| 126 |
+
if pred_type == PredictionType.v_cos:
|
| 127 |
+
t = expand_dims(t, x_0.ndim)
|
| 128 |
+
return self.A(t) * x_T - self.B(t) * x_0
|
| 129 |
+
if pred_type == PredictionType.v_lerp:
|
| 130 |
+
return x_T - x_0
|
| 131 |
+
raise NotImplementedError
|
common/diffusion/schedules/lerp.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Linear interpolation schedule (lerp).
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Union
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
from .base import Schedule
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class LinearInterpolationSchedule(Schedule):
|
| 26 |
+
"""
|
| 27 |
+
Linear interpolation schedule (lerp) is proposed by flow matching and rectified flow.
|
| 28 |
+
It leads to straighter probability flow theoretically. It is also used by Stable Diffusion 3.
|
| 29 |
+
<https://arxiv.org/abs/2209.03003>
|
| 30 |
+
<https://arxiv.org/abs/2210.02747>
|
| 31 |
+
|
| 32 |
+
x_t = (1 - t) * x_0 + t * x_T
|
| 33 |
+
|
| 34 |
+
Can be either continuous or discrete.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(self, T: Union[int, float] = 1.0):
|
| 38 |
+
self._T = T
|
| 39 |
+
|
| 40 |
+
@property
|
| 41 |
+
def T(self) -> Union[int, float]:
|
| 42 |
+
return self._T
|
| 43 |
+
|
| 44 |
+
def A(self, t: torch.Tensor) -> torch.Tensor:
|
| 45 |
+
return 1 - (t / self.T)
|
| 46 |
+
|
| 47 |
+
def B(self, t: torch.Tensor) -> torch.Tensor:
|
| 48 |
+
return t / self.T
|
| 49 |
+
|
| 50 |
+
# ----------------------------------------------------
|
| 51 |
+
|
| 52 |
+
def isnr(self, snr: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
t = self.T / (1 + snr**0.5)
|
| 54 |
+
t = t if self.is_continuous() else t.round().int()
|
| 55 |
+
return t
|
common/diffusion/timesteps/base.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from typing import Sequence, Union
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ..types import SamplingDirection
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Timesteps(ABC):
|
| 9 |
+
"""
|
| 10 |
+
Timesteps base class.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
def __init__(self, T: Union[int, float]):
|
| 14 |
+
assert T > 0
|
| 15 |
+
self._T = T
|
| 16 |
+
|
| 17 |
+
@property
|
| 18 |
+
def T(self) -> Union[int, float]:
|
| 19 |
+
"""
|
| 20 |
+
Maximum timestep inclusive.
|
| 21 |
+
int if discrete, float if continuous.
|
| 22 |
+
"""
|
| 23 |
+
return self._T
|
| 24 |
+
|
| 25 |
+
def is_continuous(self) -> bool:
|
| 26 |
+
"""
|
| 27 |
+
Whether the schedule is continuous.
|
| 28 |
+
"""
|
| 29 |
+
return isinstance(self.T, float)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class SamplingTimesteps(Timesteps):
|
| 33 |
+
"""
|
| 34 |
+
Sampling timesteps.
|
| 35 |
+
It defines the discretization of sampling steps.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
T: Union[int, float],
|
| 41 |
+
timesteps: torch.Tensor,
|
| 42 |
+
direction: SamplingDirection,
|
| 43 |
+
):
|
| 44 |
+
assert timesteps.ndim == 1
|
| 45 |
+
super().__init__(T)
|
| 46 |
+
self.timesteps = timesteps
|
| 47 |
+
self.direction = direction
|
| 48 |
+
|
| 49 |
+
def __len__(self) -> int:
|
| 50 |
+
"""
|
| 51 |
+
Number of sampling steps.
|
| 52 |
+
"""
|
| 53 |
+
return len(self.timesteps)
|
| 54 |
+
|
| 55 |
+
def __getitem__(self, idx: Union[int, torch.IntTensor]) -> torch.Tensor:
|
| 56 |
+
"""
|
| 57 |
+
The timestep at the sampling step.
|
| 58 |
+
Returns a scalar tensor if idx is int,
|
| 59 |
+
or tensor of the same size if idx is a tensor.
|
| 60 |
+
"""
|
| 61 |
+
return self.timesteps[idx]
|
| 62 |
+
|
| 63 |
+
def index(self, t: torch.Tensor) -> torch.Tensor:
|
| 64 |
+
"""
|
| 65 |
+
Find index by t.
|
| 66 |
+
Return index of the same shape as t.
|
| 67 |
+
Index is -1 if t not found in timesteps.
|
| 68 |
+
"""
|
| 69 |
+
i, j = t.reshape(-1, 1).eq(self.timesteps).nonzero(as_tuple=True)
|
| 70 |
+
idx = torch.full_like(t, fill_value=-1, dtype=torch.int)
|
| 71 |
+
idx.view(-1)[i] = j.int()
|
| 72 |
+
return idx
|
common/diffusion/timesteps/sampling/trailing.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from ...types import SamplingDirection
|
| 18 |
+
from ..base import SamplingTimesteps
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class UniformTrailingSamplingTimesteps(SamplingTimesteps):
|
| 22 |
+
"""
|
| 23 |
+
Uniform trailing sampling timesteps.
|
| 24 |
+
Defined in (https://arxiv.org/abs/2305.08891)
|
| 25 |
+
|
| 26 |
+
Shift is proposed in SD3 for RF schedule.
|
| 27 |
+
Defined in (https://arxiv.org/pdf/2403.03206) eq.23
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
T: int,
|
| 33 |
+
steps: int,
|
| 34 |
+
shift: float = 1.0,
|
| 35 |
+
device: torch.device = "cpu",
|
| 36 |
+
):
|
| 37 |
+
# Create trailing timesteps.
|
| 38 |
+
timesteps = torch.arange(1.0, 0.0, -1.0 / steps, device=device)
|
| 39 |
+
|
| 40 |
+
# Shift timesteps.
|
| 41 |
+
timesteps = shift * timesteps / (1 + (shift - 1) * timesteps)
|
| 42 |
+
|
| 43 |
+
# Scale to T range.
|
| 44 |
+
if isinstance(T, float):
|
| 45 |
+
timesteps = timesteps * T
|
| 46 |
+
else:
|
| 47 |
+
timesteps = timesteps.mul(T + 1).sub(1).round().int()
|
| 48 |
+
|
| 49 |
+
super().__init__(T=T, timesteps=timesteps, direction=SamplingDirection.backward)
|
common/diffusion/types.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Type definitions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from enum import Enum
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class PredictionType(str, Enum):
|
| 23 |
+
"""
|
| 24 |
+
x_0:
|
| 25 |
+
Predict data sample.
|
| 26 |
+
x_T:
|
| 27 |
+
Predict noise sample.
|
| 28 |
+
Proposed by DDPM (https://arxiv.org/abs/2006.11239)
|
| 29 |
+
Proved problematic by zsnr paper (https://arxiv.org/abs/2305.08891)
|
| 30 |
+
v_cos:
|
| 31 |
+
Predict velocity dx/dt based on the cosine schedule (A_t * x_T - B_t * x_0).
|
| 32 |
+
Proposed by progressive distillation (https://arxiv.org/abs/2202.00512)
|
| 33 |
+
v_lerp:
|
| 34 |
+
Predict velocity dx/dt based on the lerp schedule (x_T - x_0).
|
| 35 |
+
Proposed by rectified flow (https://arxiv.org/abs/2209.03003)
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
x_0 = "x_0"
|
| 39 |
+
x_T = "x_T"
|
| 40 |
+
v_cos = "v_cos"
|
| 41 |
+
v_lerp = "v_lerp"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class SamplingDirection(str, Enum):
|
| 45 |
+
"""
|
| 46 |
+
backward: Sample from x_T to x_0 for data generation.
|
| 47 |
+
forward: Sample from x_0 to x_T for noise inversion.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
backward = "backward"
|
| 51 |
+
forward = "forward"
|
| 52 |
+
|
| 53 |
+
@staticmethod
|
| 54 |
+
def reverse(direction):
|
| 55 |
+
if direction == SamplingDirection.backward:
|
| 56 |
+
return SamplingDirection.forward
|
| 57 |
+
if direction == SamplingDirection.forward:
|
| 58 |
+
return SamplingDirection.backward
|
| 59 |
+
raise NotImplementedError
|
common/diffusion/utils.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Utility functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Callable
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def expand_dims(tensor: torch.Tensor, ndim: int):
|
| 24 |
+
"""
|
| 25 |
+
Expand tensor to target ndim. New dims are added to the right.
|
| 26 |
+
For example, if the tensor shape was (8,), target ndim is 4, return (8, 1, 1, 1).
|
| 27 |
+
"""
|
| 28 |
+
shape = tensor.shape + (1,) * (ndim - tensor.ndim)
|
| 29 |
+
return tensor.reshape(shape)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def assert_schedule_timesteps_compatible(schedule, timesteps):
|
| 33 |
+
"""
|
| 34 |
+
Check if schedule and timesteps are compatible.
|
| 35 |
+
"""
|
| 36 |
+
if schedule.T != timesteps.T:
|
| 37 |
+
raise ValueError("Schedule and timesteps must have the same T.")
|
| 38 |
+
if schedule.is_continuous() != timesteps.is_continuous():
|
| 39 |
+
raise ValueError("Schedule and timesteps must have the same continuity.")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def classifier_free_guidance(
|
| 43 |
+
pos: torch.Tensor,
|
| 44 |
+
neg: torch.Tensor,
|
| 45 |
+
scale: float,
|
| 46 |
+
rescale: float = 0.0,
|
| 47 |
+
):
|
| 48 |
+
"""
|
| 49 |
+
Apply classifier-free guidance.
|
| 50 |
+
"""
|
| 51 |
+
# Classifier-free guidance (https://arxiv.org/abs/2207.12598)
|
| 52 |
+
cfg = neg + scale * (pos - neg)
|
| 53 |
+
|
| 54 |
+
# Classifier-free guidance rescale (https://arxiv.org/pdf/2305.08891.pdf)
|
| 55 |
+
if rescale != 0.0:
|
| 56 |
+
pos_std = pos.std(dim=list(range(1, pos.ndim)), keepdim=True)
|
| 57 |
+
cfg_std = cfg.std(dim=list(range(1, cfg.ndim)), keepdim=True)
|
| 58 |
+
factor = pos_std / cfg_std
|
| 59 |
+
factor = rescale * factor + (1 - rescale)
|
| 60 |
+
cfg *= factor
|
| 61 |
+
|
| 62 |
+
return cfg
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def classifier_free_guidance_dispatcher(
|
| 66 |
+
pos: Callable,
|
| 67 |
+
neg: Callable,
|
| 68 |
+
scale: float,
|
| 69 |
+
rescale: float = 0.0,
|
| 70 |
+
):
|
| 71 |
+
"""
|
| 72 |
+
Optionally execute models depending on classifer-free guidance scale.
|
| 73 |
+
"""
|
| 74 |
+
# If scale is 1, no need to execute neg model.
|
| 75 |
+
if scale == 1.0:
|
| 76 |
+
return pos()
|
| 77 |
+
|
| 78 |
+
# Otherwise, execute both pos nad neg models and apply cfg.
|
| 79 |
+
return classifier_free_guidance(
|
| 80 |
+
pos=pos(),
|
| 81 |
+
neg=neg(),
|
| 82 |
+
scale=scale,
|
| 83 |
+
rescale=rescale,
|
| 84 |
+
)
|
common/distributed/__init__.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Distributed package.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from .basic import (
|
| 20 |
+
barrier_if_distributed,
|
| 21 |
+
convert_to_ddp,
|
| 22 |
+
get_device,
|
| 23 |
+
get_global_rank,
|
| 24 |
+
get_local_rank,
|
| 25 |
+
get_world_size,
|
| 26 |
+
init_torch,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
__all__ = [
|
| 30 |
+
"barrier_if_distributed",
|
| 31 |
+
"convert_to_ddp",
|
| 32 |
+
"get_device",
|
| 33 |
+
"get_global_rank",
|
| 34 |
+
"get_local_rank",
|
| 35 |
+
"get_world_size",
|
| 36 |
+
"init_torch",
|
| 37 |
+
]
|
common/distributed/advanced.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Advanced distributed functions for sequence parallel.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Optional, List
|
| 20 |
+
import torch
|
| 21 |
+
import torch.distributed as dist
|
| 22 |
+
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
| 23 |
+
from torch.distributed.fsdp import ShardingStrategy
|
| 24 |
+
|
| 25 |
+
from .basic import get_global_rank, get_world_size
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
_DATA_PARALLEL_GROUP = None
|
| 29 |
+
_SEQUENCE_PARALLEL_GROUP = None
|
| 30 |
+
_SEQUENCE_PARALLEL_CPU_GROUP = None
|
| 31 |
+
_MODEL_SHARD_CPU_INTER_GROUP = None
|
| 32 |
+
_MODEL_SHARD_CPU_INTRA_GROUP = None
|
| 33 |
+
_MODEL_SHARD_INTER_GROUP = None
|
| 34 |
+
_MODEL_SHARD_INTRA_GROUP = None
|
| 35 |
+
_SEQUENCE_PARALLEL_GLOBAL_RANKS = None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_data_parallel_group() -> Optional[dist.ProcessGroup]:
|
| 39 |
+
"""
|
| 40 |
+
Get data parallel process group.
|
| 41 |
+
"""
|
| 42 |
+
return _DATA_PARALLEL_GROUP
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]:
|
| 46 |
+
"""
|
| 47 |
+
Get sequence parallel process group.
|
| 48 |
+
"""
|
| 49 |
+
return _SEQUENCE_PARALLEL_GROUP
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]:
|
| 53 |
+
"""
|
| 54 |
+
Get sequence parallel CPU process group.
|
| 55 |
+
"""
|
| 56 |
+
return _SEQUENCE_PARALLEL_CPU_GROUP
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_data_parallel_rank() -> int:
|
| 60 |
+
"""
|
| 61 |
+
Get data parallel rank.
|
| 62 |
+
"""
|
| 63 |
+
group = get_data_parallel_group()
|
| 64 |
+
return dist.get_rank(group) if group else get_global_rank()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_data_parallel_world_size() -> int:
|
| 68 |
+
"""
|
| 69 |
+
Get data parallel world size.
|
| 70 |
+
"""
|
| 71 |
+
group = get_data_parallel_group()
|
| 72 |
+
return dist.get_world_size(group) if group else get_world_size()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_sequence_parallel_rank() -> int:
|
| 76 |
+
"""
|
| 77 |
+
Get sequence parallel rank.
|
| 78 |
+
"""
|
| 79 |
+
group = get_sequence_parallel_group()
|
| 80 |
+
return dist.get_rank(group) if group else 0
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def get_sequence_parallel_world_size() -> int:
|
| 84 |
+
"""
|
| 85 |
+
Get sequence parallel world size.
|
| 86 |
+
"""
|
| 87 |
+
group = get_sequence_parallel_group()
|
| 88 |
+
return dist.get_world_size(group) if group else 1
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_shard_cpu_intra_group() -> Optional[dist.ProcessGroup]:
|
| 92 |
+
"""
|
| 93 |
+
Get the CPU intra process group of model sharding.
|
| 94 |
+
"""
|
| 95 |
+
return _MODEL_SHARD_CPU_INTRA_GROUP
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_shard_cpu_inter_group() -> Optional[dist.ProcessGroup]:
|
| 99 |
+
"""
|
| 100 |
+
Get the CPU inter process group of model sharding.
|
| 101 |
+
"""
|
| 102 |
+
return _MODEL_SHARD_CPU_INTER_GROUP
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def get_model_shard_intra_group() -> Optional[dist.ProcessGroup]:
|
| 106 |
+
"""
|
| 107 |
+
Get the GPU intra process group of model sharding.
|
| 108 |
+
"""
|
| 109 |
+
return _MODEL_SHARD_INTRA_GROUP
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def get_model_shard_inter_group() -> Optional[dist.ProcessGroup]:
|
| 113 |
+
"""
|
| 114 |
+
Get the GPU inter process group of model sharding.
|
| 115 |
+
"""
|
| 116 |
+
return _MODEL_SHARD_INTER_GROUP
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def init_sequence_parallel(sequence_parallel_size: int):
|
| 120 |
+
"""
|
| 121 |
+
Initialize sequence parallel.
|
| 122 |
+
"""
|
| 123 |
+
global _DATA_PARALLEL_GROUP
|
| 124 |
+
global _SEQUENCE_PARALLEL_GROUP
|
| 125 |
+
global _SEQUENCE_PARALLEL_CPU_GROUP
|
| 126 |
+
global _SEQUENCE_PARALLEL_GLOBAL_RANKS
|
| 127 |
+
assert dist.is_initialized()
|
| 128 |
+
world_size = dist.get_world_size()
|
| 129 |
+
rank = dist.get_rank()
|
| 130 |
+
data_parallel_size = world_size // sequence_parallel_size
|
| 131 |
+
for i in range(data_parallel_size):
|
| 132 |
+
start_rank = i * sequence_parallel_size
|
| 133 |
+
end_rank = (i + 1) * sequence_parallel_size
|
| 134 |
+
ranks = range(start_rank, end_rank)
|
| 135 |
+
group = dist.new_group(ranks)
|
| 136 |
+
cpu_group = dist.new_group(ranks, backend="gloo")
|
| 137 |
+
if rank in ranks:
|
| 138 |
+
_SEQUENCE_PARALLEL_GROUP = group
|
| 139 |
+
_SEQUENCE_PARALLEL_CPU_GROUP = cpu_group
|
| 140 |
+
_SEQUENCE_PARALLEL_GLOBAL_RANKS = list(ranks)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def init_model_shard_group(
|
| 144 |
+
*,
|
| 145 |
+
sharding_strategy: ShardingStrategy,
|
| 146 |
+
device_mesh: Optional[DeviceMesh] = None,
|
| 147 |
+
):
|
| 148 |
+
"""
|
| 149 |
+
Initialize process group of model sharding.
|
| 150 |
+
"""
|
| 151 |
+
global _MODEL_SHARD_INTER_GROUP
|
| 152 |
+
global _MODEL_SHARD_INTRA_GROUP
|
| 153 |
+
global _MODEL_SHARD_CPU_INTER_GROUP
|
| 154 |
+
global _MODEL_SHARD_CPU_INTRA_GROUP
|
| 155 |
+
assert dist.is_initialized()
|
| 156 |
+
world_size = dist.get_world_size()
|
| 157 |
+
if device_mesh is not None:
|
| 158 |
+
num_shards_per_group = device_mesh.shape[1]
|
| 159 |
+
elif sharding_strategy == ShardingStrategy.NO_SHARD:
|
| 160 |
+
num_shards_per_group = 1
|
| 161 |
+
elif sharding_strategy in [
|
| 162 |
+
ShardingStrategy.HYBRID_SHARD,
|
| 163 |
+
ShardingStrategy._HYBRID_SHARD_ZERO2,
|
| 164 |
+
]:
|
| 165 |
+
num_shards_per_group = torch.cuda.device_count()
|
| 166 |
+
else:
|
| 167 |
+
num_shards_per_group = world_size
|
| 168 |
+
num_groups = world_size // num_shards_per_group
|
| 169 |
+
device_mesh = (num_groups, num_shards_per_group)
|
| 170 |
+
|
| 171 |
+
gpu_mesh_2d = init_device_mesh("cuda", device_mesh, mesh_dim_names=("inter", "intra"))
|
| 172 |
+
cpu_mesh_2d = init_device_mesh("cpu", device_mesh, mesh_dim_names=("inter", "intra"))
|
| 173 |
+
|
| 174 |
+
_MODEL_SHARD_INTER_GROUP = gpu_mesh_2d.get_group("inter")
|
| 175 |
+
_MODEL_SHARD_INTRA_GROUP = gpu_mesh_2d.get_group("intra")
|
| 176 |
+
_MODEL_SHARD_CPU_INTER_GROUP = cpu_mesh_2d.get_group("inter")
|
| 177 |
+
_MODEL_SHARD_CPU_INTRA_GROUP = cpu_mesh_2d.get_group("intra")
|
| 178 |
+
|
| 179 |
+
def get_sequence_parallel_global_ranks() -> List[int]:
|
| 180 |
+
"""
|
| 181 |
+
Get all global ranks of the sequence parallel process group
|
| 182 |
+
that the caller rank belongs to.
|
| 183 |
+
"""
|
| 184 |
+
if _SEQUENCE_PARALLEL_GLOBAL_RANKS is None:
|
| 185 |
+
return [dist.get_rank()]
|
| 186 |
+
return _SEQUENCE_PARALLEL_GLOBAL_RANKS
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def get_next_sequence_parallel_rank() -> int:
|
| 190 |
+
"""
|
| 191 |
+
Get the next global rank of the sequence parallel process group
|
| 192 |
+
that the caller rank belongs to.
|
| 193 |
+
"""
|
| 194 |
+
sp_global_ranks = get_sequence_parallel_global_ranks()
|
| 195 |
+
sp_rank = get_sequence_parallel_rank()
|
| 196 |
+
sp_size = get_sequence_parallel_world_size()
|
| 197 |
+
return sp_global_ranks[(sp_rank + 1) % sp_size]
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def get_prev_sequence_parallel_rank() -> int:
|
| 201 |
+
"""
|
| 202 |
+
Get the previous global rank of the sequence parallel process group
|
| 203 |
+
that the caller rank belongs to.
|
| 204 |
+
"""
|
| 205 |
+
sp_global_ranks = get_sequence_parallel_global_ranks()
|
| 206 |
+
sp_rank = get_sequence_parallel_rank()
|
| 207 |
+
sp_size = get_sequence_parallel_world_size()
|
| 208 |
+
return sp_global_ranks[(sp_rank + sp_size - 1) % sp_size]
|
common/distributed/basic.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Distributed basic functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
from datetime import timedelta
|
| 21 |
+
import torch
|
| 22 |
+
import torch.distributed as dist
|
| 23 |
+
from torch.nn.parallel import DistributedDataParallel
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_global_rank() -> int:
|
| 27 |
+
"""
|
| 28 |
+
Get the global rank, the global index of the GPU.
|
| 29 |
+
"""
|
| 30 |
+
return int(os.environ.get("RANK", "0"))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_local_rank() -> int:
|
| 34 |
+
"""
|
| 35 |
+
Get the local rank, the local index of the GPU.
|
| 36 |
+
"""
|
| 37 |
+
return int(os.environ.get("LOCAL_RANK", "0"))
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_world_size() -> int:
|
| 41 |
+
"""
|
| 42 |
+
Get the world size, the total amount of GPUs.
|
| 43 |
+
"""
|
| 44 |
+
return int(os.environ.get("WORLD_SIZE", "1"))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_device() -> torch.device:
|
| 48 |
+
"""
|
| 49 |
+
Get current rank device.
|
| 50 |
+
"""
|
| 51 |
+
return torch.device("cuda", get_local_rank())
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def barrier_if_distributed(*args, **kwargs):
|
| 55 |
+
"""
|
| 56 |
+
Synchronizes all processes if under distributed context.
|
| 57 |
+
"""
|
| 58 |
+
if dist.is_initialized():
|
| 59 |
+
return dist.barrier(*args, **kwargs)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def init_torch(cudnn_benchmark=True, timeout=timedelta(seconds=600)):
|
| 63 |
+
"""
|
| 64 |
+
Common PyTorch initialization configuration.
|
| 65 |
+
"""
|
| 66 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 67 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 68 |
+
torch.backends.cudnn.benchmark = cudnn_benchmark
|
| 69 |
+
torch.cuda.set_device(get_local_rank())
|
| 70 |
+
dist.init_process_group(
|
| 71 |
+
backend="nccl",
|
| 72 |
+
rank=get_global_rank(),
|
| 73 |
+
world_size=get_world_size(),
|
| 74 |
+
timeout=timeout,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def convert_to_ddp(module: torch.nn.Module, **kwargs) -> DistributedDataParallel:
|
| 79 |
+
return DistributedDataParallel(
|
| 80 |
+
module=module,
|
| 81 |
+
device_ids=[get_local_rank()],
|
| 82 |
+
output_device=get_local_rank(),
|
| 83 |
+
**kwargs,
|
| 84 |
+
)
|
common/distributed/meta_init_utils.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from rotary_embedding_torch import RotaryEmbedding
|
| 17 |
+
from torch import nn
|
| 18 |
+
from torch.distributed.fsdp._common_utils import _is_fsdp_flattened
|
| 19 |
+
|
| 20 |
+
__all__ = ["meta_non_persistent_buffer_init_fn"]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def meta_non_persistent_buffer_init_fn(module: nn.Module) -> nn.Module:
|
| 24 |
+
"""
|
| 25 |
+
Used for materializing `non-persistent tensor buffers` while model resuming.
|
| 26 |
+
|
| 27 |
+
Since non-persistent tensor buffers are not saved in state_dict,
|
| 28 |
+
when initializing model with meta device, user should materialize those buffers manually.
|
| 29 |
+
|
| 30 |
+
Currently, only `rope.dummy` is this special case.
|
| 31 |
+
"""
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
for submodule in module.modules():
|
| 34 |
+
if not isinstance(submodule, RotaryEmbedding):
|
| 35 |
+
continue
|
| 36 |
+
for buffer_name, buffer in submodule.named_buffers(recurse=False):
|
| 37 |
+
if buffer.is_meta and "dummy" in buffer_name:
|
| 38 |
+
materialized_buffer = torch.zeros_like(buffer, device="cpu")
|
| 39 |
+
setattr(submodule, buffer_name, materialized_buffer)
|
| 40 |
+
assert not any(b.is_meta for n, b in module.named_buffers())
|
| 41 |
+
return module
|
common/distributed/ops.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Distributed ops for supporting sequence parallel.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from collections import defaultdict
|
| 20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 21 |
+
import torch
|
| 22 |
+
import torch.distributed as dist
|
| 23 |
+
from torch import Tensor
|
| 24 |
+
|
| 25 |
+
from common.cache import Cache
|
| 26 |
+
from common.distributed.advanced import (
|
| 27 |
+
get_sequence_parallel_group,
|
| 28 |
+
get_sequence_parallel_rank,
|
| 29 |
+
get_sequence_parallel_world_size,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
from .basic import get_device
|
| 33 |
+
|
| 34 |
+
_SEQ_DATA_BUF = defaultdict(lambda: [None, None, None])
|
| 35 |
+
_SEQ_DATA_META_SHAPES = defaultdict()
|
| 36 |
+
_SEQ_DATA_META_DTYPES = defaultdict()
|
| 37 |
+
_SEQ_DATA_ASYNC_COMMS = defaultdict(list)
|
| 38 |
+
_SYNC_BUFFER = defaultdict(dict)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def single_all_to_all(
|
| 42 |
+
local_input: Tensor,
|
| 43 |
+
scatter_dim: int,
|
| 44 |
+
gather_dim: int,
|
| 45 |
+
group: dist.ProcessGroup,
|
| 46 |
+
async_op: bool = False,
|
| 47 |
+
):
|
| 48 |
+
"""
|
| 49 |
+
A function to do all-to-all on a tensor
|
| 50 |
+
"""
|
| 51 |
+
seq_world_size = dist.get_world_size(group)
|
| 52 |
+
prev_scatter_dim = scatter_dim
|
| 53 |
+
if scatter_dim != 0:
|
| 54 |
+
local_input = local_input.transpose(0, scatter_dim)
|
| 55 |
+
if gather_dim == 0:
|
| 56 |
+
gather_dim = scatter_dim
|
| 57 |
+
scatter_dim = 0
|
| 58 |
+
|
| 59 |
+
inp_shape = list(local_input.shape)
|
| 60 |
+
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
|
| 61 |
+
input_t = local_input.reshape(
|
| 62 |
+
[seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :]
|
| 63 |
+
).contiguous()
|
| 64 |
+
output = torch.empty_like(input_t)
|
| 65 |
+
comm = dist.all_to_all_single(output, input_t, group=group, async_op=async_op)
|
| 66 |
+
if async_op:
|
| 67 |
+
# let user's code transpose & reshape
|
| 68 |
+
return output, comm, prev_scatter_dim
|
| 69 |
+
|
| 70 |
+
# first dim is seq_world_size, so we can split it directly
|
| 71 |
+
output = torch.cat(output.split(1), dim=gather_dim + 1).squeeze(0)
|
| 72 |
+
if prev_scatter_dim:
|
| 73 |
+
output = output.transpose(0, prev_scatter_dim).contiguous()
|
| 74 |
+
return output
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def _all_to_all(
|
| 78 |
+
local_input: Tensor,
|
| 79 |
+
scatter_dim: int,
|
| 80 |
+
gather_dim: int,
|
| 81 |
+
group: dist.ProcessGroup,
|
| 82 |
+
):
|
| 83 |
+
seq_world_size = dist.get_world_size(group)
|
| 84 |
+
input_list = [
|
| 85 |
+
t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)
|
| 86 |
+
]
|
| 87 |
+
output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
|
| 88 |
+
dist.all_to_all(output_list, input_list, group=group)
|
| 89 |
+
return torch.cat(output_list, dim=gather_dim).contiguous()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class SeqAllToAll(torch.autograd.Function):
|
| 93 |
+
@staticmethod
|
| 94 |
+
def forward(
|
| 95 |
+
ctx: Any,
|
| 96 |
+
group: dist.ProcessGroup,
|
| 97 |
+
local_input: Tensor,
|
| 98 |
+
scatter_dim: int,
|
| 99 |
+
gather_dim: int,
|
| 100 |
+
async_op: bool,
|
| 101 |
+
) -> Tensor:
|
| 102 |
+
ctx.group = group
|
| 103 |
+
ctx.scatter_dim = scatter_dim
|
| 104 |
+
ctx.gather_dim = gather_dim
|
| 105 |
+
ctx.async_op = async_op
|
| 106 |
+
if async_op:
|
| 107 |
+
output, comm, prev_scatter_dim = single_all_to_all(
|
| 108 |
+
local_input, scatter_dim, gather_dim, group, async_op=async_op
|
| 109 |
+
)
|
| 110 |
+
ctx.prev_scatter_dim = prev_scatter_dim
|
| 111 |
+
return output, comm
|
| 112 |
+
|
| 113 |
+
return _all_to_all(local_input, scatter_dim, gather_dim, group)
|
| 114 |
+
|
| 115 |
+
@staticmethod
|
| 116 |
+
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
|
| 117 |
+
if ctx.async_op:
|
| 118 |
+
input_t = torch.cat(grad_output[0].split(1), dim=ctx.gather_dim + 1).squeeze(0)
|
| 119 |
+
if ctx.prev_scatter_dim:
|
| 120 |
+
input_t = input_t.transpose(0, ctx.prev_scatter_dim)
|
| 121 |
+
else:
|
| 122 |
+
input_t = grad_output[0]
|
| 123 |
+
return (
|
| 124 |
+
None,
|
| 125 |
+
_all_to_all(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group),
|
| 126 |
+
None,
|
| 127 |
+
None,
|
| 128 |
+
None,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class Slice(torch.autograd.Function):
|
| 133 |
+
@staticmethod
|
| 134 |
+
def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int) -> Tensor:
|
| 135 |
+
ctx.group = group
|
| 136 |
+
ctx.rank = dist.get_rank(group)
|
| 137 |
+
seq_world_size = dist.get_world_size(group)
|
| 138 |
+
ctx.seq_world_size = seq_world_size
|
| 139 |
+
ctx.dim = dim
|
| 140 |
+
dim_size = local_input.shape[dim]
|
| 141 |
+
return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()
|
| 142 |
+
|
| 143 |
+
@staticmethod
|
| 144 |
+
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
|
| 145 |
+
dim_size = list(grad_output.size())
|
| 146 |
+
split_size = dim_size[0]
|
| 147 |
+
dim_size[0] = dim_size[0] * ctx.seq_world_size
|
| 148 |
+
output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
|
| 149 |
+
dist._all_gather_base(output, grad_output, group=ctx.group)
|
| 150 |
+
return (None, torch.cat(output.split(split_size), dim=ctx.dim), None)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class Gather(torch.autograd.Function):
|
| 154 |
+
@staticmethod
|
| 155 |
+
def forward(
|
| 156 |
+
ctx: Any,
|
| 157 |
+
group: dist.ProcessGroup,
|
| 158 |
+
local_input: Tensor,
|
| 159 |
+
dim: int,
|
| 160 |
+
grad_scale: Optional[bool] = False,
|
| 161 |
+
) -> Tensor:
|
| 162 |
+
ctx.group = group
|
| 163 |
+
ctx.rank = dist.get_rank(group)
|
| 164 |
+
ctx.dim = dim
|
| 165 |
+
ctx.grad_scale = grad_scale
|
| 166 |
+
seq_world_size = dist.get_world_size(group)
|
| 167 |
+
ctx.seq_world_size = seq_world_size
|
| 168 |
+
dim_size = list(local_input.size())
|
| 169 |
+
split_size = dim_size[0]
|
| 170 |
+
ctx.part_size = dim_size[dim]
|
| 171 |
+
dim_size[0] = dim_size[0] * seq_world_size
|
| 172 |
+
output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
|
| 173 |
+
dist._all_gather_base(output, local_input.contiguous(), group=ctx.group)
|
| 174 |
+
return torch.cat(output.split(split_size), dim=dim)
|
| 175 |
+
|
| 176 |
+
@staticmethod
|
| 177 |
+
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
|
| 178 |
+
if ctx.grad_scale:
|
| 179 |
+
grad_output = grad_output * ctx.seq_world_size
|
| 180 |
+
return (
|
| 181 |
+
None,
|
| 182 |
+
grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
|
| 183 |
+
None,
|
| 184 |
+
None,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def gather_seq_scatter_heads_qkv(
|
| 189 |
+
qkv_tensor: Tensor,
|
| 190 |
+
*,
|
| 191 |
+
seq_dim: int,
|
| 192 |
+
qkv_shape: Optional[Tensor] = None,
|
| 193 |
+
cache: Cache = Cache(disable=True),
|
| 194 |
+
restore_shape: bool = True,
|
| 195 |
+
):
|
| 196 |
+
"""
|
| 197 |
+
A func to sync splited qkv tensor
|
| 198 |
+
qkv_tensor: the tensor we want to do alltoall with. The last dim must
|
| 199 |
+
be the projection_idx, which we will split into 3 part. After
|
| 200 |
+
spliting, the gather idx will be projecttion_idx + 1
|
| 201 |
+
seq_dim: gather_dim for all2all comm
|
| 202 |
+
restore_shape: if True, output will has the same shape length as input
|
| 203 |
+
"""
|
| 204 |
+
group = get_sequence_parallel_group()
|
| 205 |
+
if not group:
|
| 206 |
+
return qkv_tensor
|
| 207 |
+
world = get_sequence_parallel_world_size()
|
| 208 |
+
orig_shape = qkv_tensor.shape
|
| 209 |
+
scatter_dim = qkv_tensor.dim()
|
| 210 |
+
bef_all2all_shape = list(orig_shape)
|
| 211 |
+
qkv_proj_dim = bef_all2all_shape[-1]
|
| 212 |
+
bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
|
| 213 |
+
qkv_tensor = qkv_tensor.view(bef_all2all_shape)
|
| 214 |
+
qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, False)
|
| 215 |
+
if restore_shape:
|
| 216 |
+
out_shape = list(orig_shape)
|
| 217 |
+
out_shape[seq_dim] *= world
|
| 218 |
+
out_shape[-1] = qkv_proj_dim // world
|
| 219 |
+
qkv_tensor = qkv_tensor.view(out_shape)
|
| 220 |
+
|
| 221 |
+
# remove padding
|
| 222 |
+
if qkv_shape is not None:
|
| 223 |
+
unpad_dim_size = cache(
|
| 224 |
+
"unpad_dim_size", lambda: torch.sum(torch.prod(qkv_shape, dim=-1)).item()
|
| 225 |
+
)
|
| 226 |
+
if unpad_dim_size % world != 0:
|
| 227 |
+
padding_size = qkv_tensor.size(seq_dim) - unpad_dim_size
|
| 228 |
+
qkv_tensor = _unpad_tensor(qkv_tensor, seq_dim, padding_size)
|
| 229 |
+
return qkv_tensor
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def slice_inputs(x: Tensor, dim: int, padding: bool = True):
|
| 233 |
+
"""
|
| 234 |
+
A func to slice the input sequence in sequence parallel
|
| 235 |
+
"""
|
| 236 |
+
group = get_sequence_parallel_group()
|
| 237 |
+
if group is None:
|
| 238 |
+
return x
|
| 239 |
+
sp_rank = get_sequence_parallel_rank()
|
| 240 |
+
sp_world = get_sequence_parallel_world_size()
|
| 241 |
+
dim_size = x.shape[dim]
|
| 242 |
+
unit = (dim_size + sp_world - 1) // sp_world
|
| 243 |
+
if padding and dim_size % sp_world:
|
| 244 |
+
padding_size = sp_world - (dim_size % sp_world)
|
| 245 |
+
x = _pad_tensor(x, dim, padding_size)
|
| 246 |
+
slc = [slice(None)] * len(x.shape)
|
| 247 |
+
slc[dim] = slice(unit * sp_rank, unit * (sp_rank + 1))
|
| 248 |
+
return x[slc]
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def remove_seqeunce_parallel_padding(x: Tensor, dim: int, unpad_dim_size: int):
|
| 252 |
+
"""
|
| 253 |
+
A func to remove the padding part of the tensor based on its original shape
|
| 254 |
+
"""
|
| 255 |
+
group = get_sequence_parallel_group()
|
| 256 |
+
if group is None:
|
| 257 |
+
return x
|
| 258 |
+
sp_world = get_sequence_parallel_world_size()
|
| 259 |
+
if unpad_dim_size % sp_world == 0:
|
| 260 |
+
return x
|
| 261 |
+
padding_size = sp_world - (unpad_dim_size % sp_world)
|
| 262 |
+
assert (padding_size + unpad_dim_size) % sp_world == 0
|
| 263 |
+
return _unpad_tensor(x, dim=dim, padding_size=padding_size)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
|
| 267 |
+
"""
|
| 268 |
+
A func to sync attention result with alltoall in sequence parallel
|
| 269 |
+
"""
|
| 270 |
+
group = get_sequence_parallel_group()
|
| 271 |
+
if not group:
|
| 272 |
+
return x
|
| 273 |
+
dim_size = x.size(seq_dim)
|
| 274 |
+
sp_world = get_sequence_parallel_world_size()
|
| 275 |
+
if dim_size % sp_world != 0:
|
| 276 |
+
padding_size = sp_world - (dim_size % sp_world)
|
| 277 |
+
x = _pad_tensor(x, seq_dim, padding_size)
|
| 278 |
+
return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def gather_seq_scatter_heads(x: Tensor, seq_dim: int, head_dim: int) -> Tensor:
|
| 282 |
+
"""
|
| 283 |
+
A func to sync embedding input with alltoall in sequence parallel
|
| 284 |
+
"""
|
| 285 |
+
group = get_sequence_parallel_group()
|
| 286 |
+
if not group:
|
| 287 |
+
return x
|
| 288 |
+
return SeqAllToAll.apply(group, x, head_dim, seq_dim, False)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def scatter_heads(x: Tensor, dim: int) -> Tensor:
|
| 292 |
+
"""
|
| 293 |
+
A func to split heads before attention in sequence parallel
|
| 294 |
+
"""
|
| 295 |
+
group = get_sequence_parallel_group()
|
| 296 |
+
if not group:
|
| 297 |
+
return x
|
| 298 |
+
return Slice.apply(group, x, dim)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def gather_heads(x: Tensor, dim: int, grad_scale: Optional[bool] = False) -> Tensor:
|
| 302 |
+
"""
|
| 303 |
+
A func to gather heads for the attention result in sequence parallel
|
| 304 |
+
"""
|
| 305 |
+
group = get_sequence_parallel_group()
|
| 306 |
+
if not group:
|
| 307 |
+
return x
|
| 308 |
+
return Gather.apply(group, x, dim, grad_scale)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def gather_outputs(
|
| 312 |
+
x: Tensor,
|
| 313 |
+
*,
|
| 314 |
+
gather_dim: int,
|
| 315 |
+
padding_dim: Optional[int] = None,
|
| 316 |
+
unpad_shape: Optional[Tensor] = None,
|
| 317 |
+
cache: Cache = Cache(disable=True),
|
| 318 |
+
scale_grad=True,
|
| 319 |
+
):
|
| 320 |
+
"""
|
| 321 |
+
A func to gather the outputs for the model result in sequence parallel
|
| 322 |
+
"""
|
| 323 |
+
group = get_sequence_parallel_group()
|
| 324 |
+
if not group:
|
| 325 |
+
return x
|
| 326 |
+
x = Gather.apply(group, x, gather_dim, scale_grad)
|
| 327 |
+
if padding_dim is not None:
|
| 328 |
+
unpad_dim_size = cache(
|
| 329 |
+
"unpad_dim_size", lambda: torch.sum(torch.prod(unpad_shape, dim=1)).item()
|
| 330 |
+
)
|
| 331 |
+
x = remove_seqeunce_parallel_padding(x, padding_dim, unpad_dim_size)
|
| 332 |
+
return x
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _pad_tensor(x: Tensor, dim: int, padding_size: int):
|
| 336 |
+
shape = list(x.shape)
|
| 337 |
+
shape[dim] = padding_size
|
| 338 |
+
pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
|
| 339 |
+
return torch.cat([x, pad], dim=dim)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def _unpad_tensor(x: Tensor, dim: int, padding_size):
|
| 343 |
+
slc = [slice(None)] * len(x.shape)
|
| 344 |
+
slc[dim] = slice(0, -padding_size)
|
| 345 |
+
return x[slc]
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def _broadcast_data(data, shape, dtype, src, group, async_op):
|
| 349 |
+
comms = []
|
| 350 |
+
if isinstance(data, (list, tuple)):
|
| 351 |
+
for i, sub_shape in enumerate(shape):
|
| 352 |
+
comms += _broadcast_data(data[i], sub_shape, dtype[i], src, group, async_op)
|
| 353 |
+
elif isinstance(data, dict):
|
| 354 |
+
for key, sub_data in data.items():
|
| 355 |
+
comms += _broadcast_data(sub_data, shape[key], dtype[key], src, group, async_op)
|
| 356 |
+
elif isinstance(data, Tensor):
|
| 357 |
+
comms.append(dist.broadcast(data, src=src, group=group, async_op=async_op))
|
| 358 |
+
return comms
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _traverse(data: Any, op: Callable) -> Union[None, List, Dict, Any]:
|
| 362 |
+
if isinstance(data, (list, tuple)):
|
| 363 |
+
return [_traverse(sub_data, op) for sub_data in data]
|
| 364 |
+
elif isinstance(data, dict):
|
| 365 |
+
return {key: _traverse(sub_data, op) for key, sub_data in data.items()}
|
| 366 |
+
elif isinstance(data, Tensor):
|
| 367 |
+
return op(data)
|
| 368 |
+
else:
|
| 369 |
+
return None
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def _get_shapes(data):
|
| 373 |
+
return _traverse(data, op=lambda x: x.shape)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def _get_dtypes(data):
|
| 377 |
+
return _traverse(data, op=lambda x: x.dtype)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def _construct_broadcast_buffer(shapes, dtypes, device):
|
| 381 |
+
if isinstance(shapes, torch.Size):
|
| 382 |
+
return torch.empty(shapes, dtype=dtypes, device=device)
|
| 383 |
+
|
| 384 |
+
if isinstance(shapes, (list, tuple)):
|
| 385 |
+
buffer = []
|
| 386 |
+
for i, sub_shape in enumerate(shapes):
|
| 387 |
+
buffer.append(_construct_broadcast_buffer(sub_shape, dtypes[i], device))
|
| 388 |
+
elif isinstance(shapes, dict):
|
| 389 |
+
buffer = {}
|
| 390 |
+
for key, sub_shape in shapes.items():
|
| 391 |
+
buffer[key] = _construct_broadcast_buffer(sub_shape, dtypes[key], device)
|
| 392 |
+
else:
|
| 393 |
+
return None
|
| 394 |
+
return buffer
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class SPDistForward:
|
| 398 |
+
"""A forward tool to sync different result across sp group
|
| 399 |
+
|
| 400 |
+
Args:
|
| 401 |
+
module: a function or module to process users input
|
| 402 |
+
sp_step: current training step to judge which rank to broadcast its result to all
|
| 403 |
+
name: a distinct str to save meta and async comm
|
| 404 |
+
comm_shape: if different ranks have different shape, mark this arg to True
|
| 405 |
+
device: the device for current rank, can be empty
|
| 406 |
+
"""
|
| 407 |
+
|
| 408 |
+
def __init__(
|
| 409 |
+
self,
|
| 410 |
+
name: str,
|
| 411 |
+
comm_shape: bool,
|
| 412 |
+
device: torch.device = None,
|
| 413 |
+
):
|
| 414 |
+
self.name = name
|
| 415 |
+
self.comm_shape = comm_shape
|
| 416 |
+
if device:
|
| 417 |
+
self.device = device
|
| 418 |
+
else:
|
| 419 |
+
self.device = get_device()
|
| 420 |
+
|
| 421 |
+
def __call__(self, inputs) -> Any:
|
| 422 |
+
group = get_sequence_parallel_group()
|
| 423 |
+
if not group:
|
| 424 |
+
yield inputs
|
| 425 |
+
else:
|
| 426 |
+
device = self.device
|
| 427 |
+
sp_world = get_sequence_parallel_world_size()
|
| 428 |
+
sp_rank = get_sequence_parallel_rank()
|
| 429 |
+
for local_step in range(sp_world):
|
| 430 |
+
src_rank = dist.get_global_rank(group, local_step)
|
| 431 |
+
is_src = sp_rank == local_step
|
| 432 |
+
local_shapes = []
|
| 433 |
+
local_dtypes = []
|
| 434 |
+
if local_step == 0:
|
| 435 |
+
local_result = inputs
|
| 436 |
+
_SEQ_DATA_BUF[self.name][-1] = local_result
|
| 437 |
+
local_shapes = _get_shapes(local_result)
|
| 438 |
+
local_dtypes = _get_dtypes(local_result)
|
| 439 |
+
if self.comm_shape:
|
| 440 |
+
group_shapes_lists = [None] * sp_world
|
| 441 |
+
dist.all_gather_object(group_shapes_lists, local_shapes, group=group)
|
| 442 |
+
_SEQ_DATA_META_SHAPES[self.name] = group_shapes_lists
|
| 443 |
+
else:
|
| 444 |
+
_SEQ_DATA_META_SHAPES[self.name] = [local_shapes] * sp_world
|
| 445 |
+
_SEQ_DATA_META_DTYPES[self.name] = local_dtypes
|
| 446 |
+
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step]
|
| 447 |
+
dtypes = _SEQ_DATA_META_DTYPES[self.name]
|
| 448 |
+
buf_id = local_step % 2
|
| 449 |
+
if local_step == 0:
|
| 450 |
+
sync_data = (
|
| 451 |
+
local_result
|
| 452 |
+
if is_src
|
| 453 |
+
else _construct_broadcast_buffer(shapes, dtypes, device)
|
| 454 |
+
)
|
| 455 |
+
_broadcast_data(sync_data, shapes, dtypes, src_rank, group, False)
|
| 456 |
+
_SEQ_DATA_BUF[self.name][buf_id] = sync_data
|
| 457 |
+
|
| 458 |
+
# wait for async comm ops
|
| 459 |
+
if _SEQ_DATA_ASYNC_COMMS[self.name]:
|
| 460 |
+
for comm in _SEQ_DATA_ASYNC_COMMS[self.name]:
|
| 461 |
+
comm.wait()
|
| 462 |
+
# before return the sync result, do async broadcast for next batch
|
| 463 |
+
if local_step < sp_world - 1:
|
| 464 |
+
next_buf_id = 1 - buf_id
|
| 465 |
+
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step + 1]
|
| 466 |
+
src_rank = dist.get_global_rank(group, local_step + 1)
|
| 467 |
+
is_src = sp_rank == local_step + 1
|
| 468 |
+
next_sync_data = (
|
| 469 |
+
_SEQ_DATA_BUF[self.name][-1]
|
| 470 |
+
if is_src
|
| 471 |
+
else _construct_broadcast_buffer(shapes, dtypes, device)
|
| 472 |
+
)
|
| 473 |
+
_SEQ_DATA_ASYNC_COMMS[self.name] = _broadcast_data(
|
| 474 |
+
next_sync_data, shapes, dtypes, src_rank, group, True
|
| 475 |
+
)
|
| 476 |
+
_SEQ_DATA_BUF[self.name][next_buf_id] = next_sync_data
|
| 477 |
+
yield _SEQ_DATA_BUF[self.name][buf_id]
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
sync_inputs = SPDistForward(name="bef_fwd", comm_shape=True)
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def sync_data(data, sp_idx, name="tmp"):
|
| 484 |
+
group = get_sequence_parallel_group()
|
| 485 |
+
if group is None:
|
| 486 |
+
return data
|
| 487 |
+
# if sp_idx in _SYNC_BUFFER[name]:
|
| 488 |
+
# return _SYNC_BUFFER[name][sp_idx]
|
| 489 |
+
sp_rank = get_sequence_parallel_rank()
|
| 490 |
+
src_rank = dist.get_global_rank(group, sp_idx)
|
| 491 |
+
objects = [data] if sp_rank == sp_idx else [None]
|
| 492 |
+
dist.broadcast_object_list(objects, src=src_rank, group=group)
|
| 493 |
+
# _SYNC_BUFFER[name] = {sp_idx: objects[0]}
|
| 494 |
+
return objects[0]
|
common/logger.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Logging utility functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import logging
|
| 20 |
+
import sys
|
| 21 |
+
from typing import Optional
|
| 22 |
+
|
| 23 |
+
from common.distributed import get_global_rank, get_local_rank, get_world_size
|
| 24 |
+
|
| 25 |
+
_default_handler = logging.StreamHandler(sys.stdout)
|
| 26 |
+
_default_handler.setFormatter(
|
| 27 |
+
logging.Formatter(
|
| 28 |
+
"%(asctime)s "
|
| 29 |
+
+ (f"[Rank:{get_global_rank()}]" if get_world_size() > 1 else "")
|
| 30 |
+
+ (f"[LocalRank:{get_local_rank()}]" if get_world_size() > 1 else "")
|
| 31 |
+
+ "[%(threadName).12s][%(name)s][%(levelname).5s] "
|
| 32 |
+
+ "%(message)s"
|
| 33 |
+
)
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_logger(name: Optional[str] = None) -> logging.Logger:
|
| 38 |
+
"""
|
| 39 |
+
Get a logger.
|
| 40 |
+
"""
|
| 41 |
+
logger = logging.getLogger(name)
|
| 42 |
+
logger.addHandler(_default_handler)
|
| 43 |
+
logger.setLevel(logging.INFO)
|
| 44 |
+
return logger
|
common/partition.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Partition utility functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Any, List
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def partition_by_size(data: List[Any], size: int) -> List[List[Any]]:
|
| 23 |
+
"""
|
| 24 |
+
Partition a list by size.
|
| 25 |
+
When indivisible, the last group contains fewer items than the target size.
|
| 26 |
+
|
| 27 |
+
Examples:
|
| 28 |
+
- data: [1,2,3,4,5]
|
| 29 |
+
- size: 2
|
| 30 |
+
- return: [[1,2], [3,4], [5]]
|
| 31 |
+
"""
|
| 32 |
+
assert size > 0
|
| 33 |
+
return [data[i : (i + size)] for i in range(0, len(data), size)]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def partition_by_groups(data: List[Any], groups: int) -> List[List[Any]]:
|
| 37 |
+
"""
|
| 38 |
+
Partition a list by groups.
|
| 39 |
+
When indivisible, some groups may have more items than others.
|
| 40 |
+
|
| 41 |
+
Examples:
|
| 42 |
+
- data: [1,2,3,4,5]
|
| 43 |
+
- groups: 2
|
| 44 |
+
- return: [[1,3,5], [2,4]]
|
| 45 |
+
"""
|
| 46 |
+
assert groups > 0
|
| 47 |
+
return [data[i::groups] for i in range(groups)]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def shift_list(data: List[Any], n: int) -> List[Any]:
|
| 51 |
+
"""
|
| 52 |
+
Rotate a list by n elements.
|
| 53 |
+
|
| 54 |
+
Examples:
|
| 55 |
+
- data: [1,2,3,4,5]
|
| 56 |
+
- n: 3
|
| 57 |
+
- return: [4,5,1,2,3]
|
| 58 |
+
"""
|
| 59 |
+
return data[(n % len(data)) :] + data[: (n % len(data))]
|
common/seed.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import random
|
| 16 |
+
from typing import Optional
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
from common.distributed import get_global_rank
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def set_seed(seed: Optional[int], same_across_ranks: bool = False):
|
| 24 |
+
"""Function that sets the seed for pseudo-random number generators."""
|
| 25 |
+
if seed is not None:
|
| 26 |
+
seed += get_global_rank() if not same_across_ranks else 0
|
| 27 |
+
random.seed(seed)
|
| 28 |
+
np.random.seed(seed)
|
| 29 |
+
torch.manual_seed(seed)
|
| 30 |
+
|
common/utils.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
import re
|
| 17 |
+
|
| 18 |
+
import cv2
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
from torchvision.utils import make_grid
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# from basicsr
|
| 25 |
+
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
| 26 |
+
"""Numpy array to tensor.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
imgs (list[ndarray] | ndarray): Input images.
|
| 30 |
+
bgr2rgb (bool): Whether to change bgr to rgb.
|
| 31 |
+
float32 (bool): Whether to change to float32.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
list[tensor] | tensor: Tensor images. If returned results only have
|
| 35 |
+
one element, just return tensor.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def _totensor(img, bgr2rgb, float32):
|
| 39 |
+
if img.shape[2] == 3 and bgr2rgb:
|
| 40 |
+
if img.dtype == 'float64':
|
| 41 |
+
img = img.astype('float32')
|
| 42 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 43 |
+
img = torch.from_numpy(img.transpose(2, 0, 1))
|
| 44 |
+
if float32:
|
| 45 |
+
img = img.float()
|
| 46 |
+
return img
|
| 47 |
+
|
| 48 |
+
if isinstance(imgs, list):
|
| 49 |
+
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
| 50 |
+
return _totensor(imgs, bgr2rgb, float32)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
| 54 |
+
"""Convert torch Tensors into image numpy arrays.
|
| 55 |
+
|
| 56 |
+
After clamping to [min, max], values will be normalized to [0, 1].
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
tensor (Tensor or list[Tensor]): Accept shapes:
|
| 60 |
+
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
| 61 |
+
2) 3D Tensor of shape (3/1 x H x W);
|
| 62 |
+
3) 2D Tensor of shape (H x W).
|
| 63 |
+
Tensor channel should be in RGB order.
|
| 64 |
+
rgb2bgr (bool): Whether to change rgb to bgr.
|
| 65 |
+
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
| 66 |
+
to uint8 type with range [0, 255]; otherwise, float type with
|
| 67 |
+
range [0, 1]. Default: ``np.uint8``.
|
| 68 |
+
min_max (tuple[int]): min and max values for clamp.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
| 72 |
+
shape (H x W). The channel order is BGR.
|
| 73 |
+
"""
|
| 74 |
+
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
| 75 |
+
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
| 76 |
+
|
| 77 |
+
if torch.is_tensor(tensor):
|
| 78 |
+
tensor = [tensor]
|
| 79 |
+
result = []
|
| 80 |
+
for _tensor in tensor:
|
| 81 |
+
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
| 82 |
+
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
| 83 |
+
|
| 84 |
+
n_dim = _tensor.dim()
|
| 85 |
+
if n_dim == 4:
|
| 86 |
+
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
| 87 |
+
img_np = img_np.transpose(1, 2, 0)
|
| 88 |
+
if rgb2bgr:
|
| 89 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 90 |
+
elif n_dim == 3:
|
| 91 |
+
img_np = _tensor.numpy()
|
| 92 |
+
img_np = img_np.transpose(1, 2, 0)
|
| 93 |
+
if img_np.shape[2] == 1: # gray image
|
| 94 |
+
img_np = np.squeeze(img_np, axis=2)
|
| 95 |
+
else:
|
| 96 |
+
if rgb2bgr:
|
| 97 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 98 |
+
elif n_dim == 2:
|
| 99 |
+
img_np = _tensor.numpy()
|
| 100 |
+
else:
|
| 101 |
+
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
| 102 |
+
if out_type == np.uint8:
|
| 103 |
+
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
| 104 |
+
img_np = (img_np * 255.0).round()
|
| 105 |
+
img_np = img_np.astype(out_type)
|
| 106 |
+
result.append(img_np)
|
| 107 |
+
if len(result) == 1:
|
| 108 |
+
result = result[0]
|
| 109 |
+
return result
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def resize_numpy_image_area(image, area=512 * 512):
|
| 113 |
+
h, w = image.shape[:2]
|
| 114 |
+
k = math.sqrt(area / (h * w))
|
| 115 |
+
h = int(h * k) - (int(h * k) % 16)
|
| 116 |
+
w = int(w * k) - (int(w * k) % 16)
|
| 117 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
| 118 |
+
return image
|
| 119 |
+
|
| 120 |
+
def resize_numpy_image_long(image, long_edge=768):
|
| 121 |
+
h, w = image.shape[:2]
|
| 122 |
+
if max(h, w) <= long_edge:
|
| 123 |
+
return image
|
| 124 |
+
k = long_edge / max(h, w)
|
| 125 |
+
h = int(h * k)
|
| 126 |
+
w = int(w * k)
|
| 127 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
| 128 |
+
return image
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# reference: https://github.com/huggingface/diffusers/pull/9295/files
|
| 132 |
+
def convert_flux_lora_to_diffusers(old_state_dict):
|
| 133 |
+
new_state_dict = {}
|
| 134 |
+
orig_keys = list(old_state_dict.keys())
|
| 135 |
+
|
| 136 |
+
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
|
| 137 |
+
down_weight = sds_sd.pop(sds_key)
|
| 138 |
+
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))
|
| 139 |
+
|
| 140 |
+
# calculate dims if not provided
|
| 141 |
+
num_splits = len(ait_keys)
|
| 142 |
+
if dims is None:
|
| 143 |
+
dims = [up_weight.shape[0] // num_splits] * num_splits
|
| 144 |
+
else:
|
| 145 |
+
assert sum(dims) == up_weight.shape[0]
|
| 146 |
+
|
| 147 |
+
# make ai-toolkit weight
|
| 148 |
+
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
|
| 149 |
+
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
|
| 150 |
+
|
| 151 |
+
# down_weight is copied to each split
|
| 152 |
+
ait_sd.update({k: down_weight for k in ait_down_keys})
|
| 153 |
+
|
| 154 |
+
# up_weight is split to each split
|
| 155 |
+
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
|
| 156 |
+
|
| 157 |
+
for old_key in orig_keys:
|
| 158 |
+
# Handle double_blocks
|
| 159 |
+
if 'double_blocks' in old_key:
|
| 160 |
+
block_num = re.search(r"double_blocks_(\d+)", old_key).group(1)
|
| 161 |
+
new_key = f"transformer.transformer_blocks.{block_num}"
|
| 162 |
+
|
| 163 |
+
if "proj_lora1" in old_key:
|
| 164 |
+
new_key += ".attn.to_out.0"
|
| 165 |
+
elif "proj_lora2" in old_key:
|
| 166 |
+
new_key += ".attn.to_add_out"
|
| 167 |
+
elif "qkv_lora2" in old_key and "up" not in old_key:
|
| 168 |
+
handle_qkv(
|
| 169 |
+
old_state_dict,
|
| 170 |
+
new_state_dict,
|
| 171 |
+
old_key,
|
| 172 |
+
[
|
| 173 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
|
| 174 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
|
| 175 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
|
| 176 |
+
],
|
| 177 |
+
)
|
| 178 |
+
# continue
|
| 179 |
+
elif "qkv_lora1" in old_key and "up" not in old_key:
|
| 180 |
+
handle_qkv(
|
| 181 |
+
old_state_dict,
|
| 182 |
+
new_state_dict,
|
| 183 |
+
old_key,
|
| 184 |
+
[
|
| 185 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_q",
|
| 186 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_k",
|
| 187 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_v",
|
| 188 |
+
],
|
| 189 |
+
)
|
| 190 |
+
# continue
|
| 191 |
+
|
| 192 |
+
if "down" in old_key:
|
| 193 |
+
new_key += ".lora_A.weight"
|
| 194 |
+
elif "up" in old_key:
|
| 195 |
+
new_key += ".lora_B.weight"
|
| 196 |
+
|
| 197 |
+
# Handle single_blocks
|
| 198 |
+
elif 'single_blocks' in old_key:
|
| 199 |
+
block_num = re.search(r"single_blocks_(\d+)", old_key).group(1)
|
| 200 |
+
new_key = f"transformer.single_transformer_blocks.{block_num}"
|
| 201 |
+
|
| 202 |
+
if "proj_lora" in old_key:
|
| 203 |
+
new_key += ".proj_out"
|
| 204 |
+
elif "qkv_lora" in old_key and "up" not in old_key:
|
| 205 |
+
handle_qkv(
|
| 206 |
+
old_state_dict,
|
| 207 |
+
new_state_dict,
|
| 208 |
+
old_key,
|
| 209 |
+
[
|
| 210 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_q",
|
| 211 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_k",
|
| 212 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_v",
|
| 213 |
+
],
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
if "down" in old_key:
|
| 217 |
+
new_key += ".lora_A.weight"
|
| 218 |
+
elif "up" in old_key:
|
| 219 |
+
new_key += ".lora_B.weight"
|
| 220 |
+
|
| 221 |
+
else:
|
| 222 |
+
# Handle other potential key patterns here
|
| 223 |
+
new_key = old_key
|
| 224 |
+
|
| 225 |
+
# Since we already handle qkv above.
|
| 226 |
+
if "qkv" not in old_key and 'embedding' not in old_key:
|
| 227 |
+
new_state_dict[new_key] = old_state_dict.pop(old_key)
|
| 228 |
+
|
| 229 |
+
# if len(old_state_dict) > 0:
|
| 230 |
+
# raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")
|
| 231 |
+
|
| 232 |
+
return new_state_dict
|