Delete app.py
Browse files
app.py
DELETED
|
@@ -1,337 +0,0 @@
|
|
| 1 |
-
# deformes4D_engine.py
|
| 2 |
-
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 3 |
-
#
|
| 4 |
-
# MODIFICATIONS FOR ADUC-SDR:
|
| 5 |
-
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
|
| 6 |
-
#
|
| 7 |
-
# This file is part of the ADUC-SDR project. It contains the core logic for
|
| 8 |
-
# video fragment generation, latent manipulation, and dynamic editing,
|
| 9 |
-
# governed by the ADUC orchestrator.
|
| 10 |
-
# This component is licensed under the GNU Affero General Public License v3.0.
|
| 11 |
-
|
| 12 |
-
import os
|
| 13 |
-
import time
|
| 14 |
-
import imageio
|
| 15 |
-
import numpy as np
|
| 16 |
-
import torch
|
| 17 |
-
import logging
|
| 18 |
-
from PIL import Image, ImageOps
|
| 19 |
-
from dataclasses import dataclass
|
| 20 |
-
import gradio as gr
|
| 21 |
-
import subprocess
|
| 22 |
-
import gc
|
| 23 |
-
|
| 24 |
-
from ltx_manager_helpers import ltx_manager_singleton
|
| 25 |
-
from gemini_helpers import gemini_singleton
|
| 26 |
-
from upscaler_specialist import upscaler_specialist_singleton
|
| 27 |
-
from hd_specialist import hd_specialist_singleton
|
| 28 |
-
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 29 |
-
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 30 |
-
from audio_specialist import audio_specialist_singleton
|
| 31 |
-
|
| 32 |
-
logger = logging.getLogger(__name__)
|
| 33 |
-
|
| 34 |
-
@dataclass
|
| 35 |
-
class LatentConditioningItem:
|
| 36 |
-
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
|
| 37 |
-
latent_tensor: torch.Tensor
|
| 38 |
-
media_frame_number: int
|
| 39 |
-
conditioning_strength: float
|
| 40 |
-
|
| 41 |
-
class Deformes4DEngine:
|
| 42 |
-
"""
|
| 43 |
-
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
|
| 44 |
-
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
|
| 45 |
-
"""
|
| 46 |
-
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
|
| 47 |
-
self.ltx_manager = ltx_manager
|
| 48 |
-
self.workspace_dir = workspace_dir
|
| 49 |
-
self._vae = None
|
| 50 |
-
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 51 |
-
logger.info("Especialista Deformes4D (Executor ADUC-SDR) inicializado.")
|
| 52 |
-
|
| 53 |
-
@property
|
| 54 |
-
def vae(self):
|
| 55 |
-
if self._vae is None:
|
| 56 |
-
self._vae = self.ltx_manager.workers[0].pipeline.vae
|
| 57 |
-
self._vae.to(self.device); self._vae.eval()
|
| 58 |
-
return self._vae
|
| 59 |
-
|
| 60 |
-
# --- MÉTODOS AUXILIARES ---
|
| 61 |
-
@torch.no_grad()
|
| 62 |
-
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
|
| 63 |
-
tensor = tensor.to(self.device, dtype=self.vae.dtype)
|
| 64 |
-
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
|
| 65 |
-
|
| 66 |
-
@torch.no_grad()
|
| 67 |
-
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
|
| 68 |
-
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
|
| 69 |
-
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
|
| 70 |
-
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
|
| 71 |
-
|
| 72 |
-
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
|
| 73 |
-
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
|
| 74 |
-
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
|
| 75 |
-
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
|
| 76 |
-
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
|
| 77 |
-
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
|
| 78 |
-
for frame in video_np: writer.append_data(frame)
|
| 79 |
-
|
| 80 |
-
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
| 81 |
-
if image.size != target_resolution:
|
| 82 |
-
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 83 |
-
return image
|
| 84 |
-
|
| 85 |
-
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
|
| 86 |
-
image_np = np.array(pil_image).astype(np.float32) / 255.0
|
| 87 |
-
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 88 |
-
tensor = (tensor * 2.0) - 1.0
|
| 89 |
-
return self.pixels_to_latents(tensor)
|
| 90 |
-
|
| 91 |
-
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str):
|
| 92 |
-
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
|
| 93 |
-
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 94 |
-
with open(list_file_path, 'w', encoding='utf-8') as f:
|
| 95 |
-
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
|
| 96 |
-
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 97 |
-
logger.info(f"Concatenando {len(video_paths)} clipes de vídeo em {output_path}...")
|
| 98 |
-
try:
|
| 99 |
-
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 100 |
-
except subprocess.CalledProcessError as e:
|
| 101 |
-
logger.error(f"Erro no FFmpeg: {e.stderr}")
|
| 102 |
-
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
|
| 103 |
-
|
| 104 |
-
# --- NÚCLEO DA LÓGICA ADUC-SDR ---
|
| 105 |
-
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
|
| 106 |
-
seconds_per_fragment: float, trim_percent: int,
|
| 107 |
-
handler_strength: float, destination_convergence_strength: float,
|
| 108 |
-
use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
|
| 109 |
-
video_resolution: int, use_continuity_director: bool,
|
| 110 |
-
progress: gr.Progress = gr.Progress()):
|
| 111 |
-
|
| 112 |
-
FPS = 24
|
| 113 |
-
FRAMES_PER_LATENT_CHUNK = 8
|
| 114 |
-
ECO_LATENT_CHUNKS = 2
|
| 115 |
-
|
| 116 |
-
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
|
| 117 |
-
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
|
| 118 |
-
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
|
| 119 |
-
|
| 120 |
-
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
|
| 121 |
-
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
|
| 122 |
-
|
| 123 |
-
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20, "image_cond_noise_scale": 0.00}
|
| 124 |
-
refine_ltx_params = {"motion_prompt": "", "guidance_scale": 1.0, "denoise_strength": 0.35, "refine_steps": 12}
|
| 125 |
-
|
| 126 |
-
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
|
| 127 |
-
story_history = ""
|
| 128 |
-
target_resolution_tuple = (video_resolution, video_resolution)
|
| 129 |
-
|
| 130 |
-
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 131 |
-
latent_fragments, latent_fragment_lengths = [], []
|
| 132 |
-
|
| 133 |
-
if len(keyframe_paths) < 2: raise gr.Error(f"A geração requer no mínimo 2 keyframes. Você forneceu {len(keyframe_paths)}.")
|
| 134 |
-
|
| 135 |
-
num_transitions_to_generate = len(keyframe_paths) - 1
|
| 136 |
-
|
| 137 |
-
for i in range(num_transitions_to_generate):
|
| 138 |
-
fragment_index = i + 1
|
| 139 |
-
progress(i / num_transitions_to_generate, desc=f"Gerando Latentes {fragment_index}/{num_transitions_to_generate}")
|
| 140 |
-
|
| 141 |
-
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
|
| 142 |
-
start_keyframe_path = keyframe_paths[i]
|
| 143 |
-
destination_keyframe_path = keyframe_paths[i + 1]
|
| 144 |
-
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
|
| 145 |
-
|
| 146 |
-
decision = gemini_singleton.get_cinematic_decision(
|
| 147 |
-
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
|
| 148 |
-
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt
|
| 149 |
-
)
|
| 150 |
-
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 151 |
-
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
|
| 152 |
-
|
| 153 |
-
conditioning_items = []
|
| 154 |
-
if eco_latent_for_next_loop is None:
|
| 155 |
-
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
|
| 156 |
-
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
|
| 157 |
-
else:
|
| 158 |
-
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
|
| 159 |
-
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
|
| 160 |
-
|
| 161 |
-
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
|
| 162 |
-
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
|
| 163 |
-
|
| 164 |
-
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
|
| 165 |
-
latents_brutos = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
|
| 166 |
-
|
| 167 |
-
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
|
| 168 |
-
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
|
| 169 |
-
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
|
| 170 |
-
|
| 171 |
-
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
|
| 172 |
-
latents_video = latents_video[:, :, 1:, :, :]
|
| 173 |
-
|
| 174 |
-
# [LIMPEZA DE MEMÓRIA]
|
| 175 |
-
del last_trim, latents_brutos
|
| 176 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 177 |
-
|
| 178 |
-
if transition_type == "cut":
|
| 179 |
-
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 180 |
-
|
| 181 |
-
if use_upscaler:
|
| 182 |
-
latents_video = self.upscale_latents(latents_video)
|
| 183 |
-
|
| 184 |
-
latent_fragments.append(latents_video)
|
| 185 |
-
latent_fragment_lengths.append(latents_video.shape[2])
|
| 186 |
-
|
| 187 |
-
# [LIMPEZA DE MEMÓRIA]
|
| 188 |
-
del eco_latent_for_next_loop, dejavu_latent_for_next_loop
|
| 189 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 190 |
-
|
| 191 |
-
logger.info("--- CONCATENANDO E REFINANDO SUPER-LATENTE ---")
|
| 192 |
-
tensors_para_concatenar = []
|
| 193 |
-
for idx, tensor_frag in enumerate(latent_fragments):
|
| 194 |
-
tensor_on_target_device = tensor_frag.to(self.device)
|
| 195 |
-
if idx < len(latent_fragments) - 1:
|
| 196 |
-
tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :])
|
| 197 |
-
else:
|
| 198 |
-
tensors_para_concatenar.append(tensor_on_target_device)
|
| 199 |
-
|
| 200 |
-
# [LIMPEZA DE MEMÓRIA]
|
| 201 |
-
del latent_fragments
|
| 202 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 203 |
-
|
| 204 |
-
processed_latents = torch.cat(tensors_para_concatenar, dim=2)
|
| 205 |
-
|
| 206 |
-
# [LIMPEZA DE MEMÓRIA]
|
| 207 |
-
del tensors_para_concatenar
|
| 208 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 209 |
-
|
| 210 |
-
logger.info(f"Concatenação concluída. Shape do super-latente: {processed_latents.shape}")
|
| 211 |
-
|
| 212 |
-
if use_refiner:
|
| 213 |
-
progress(0.8, desc="Refinando continuidade visual...")
|
| 214 |
-
processed_latents = self.refine_latents(processed_latents, **refine_ltx_params)
|
| 215 |
-
|
| 216 |
-
logger.info("--- DIVIDINDO SUPER-LATENTE E PROCESSANDO FRAGMENTOS INDIVIDUALMENTE ---")
|
| 217 |
-
|
| 218 |
-
adjusted_lengths = [l - 1 if i < len(latent_fragment_lengths) - 1 else l for i, l in enumerate(latent_fragment_lengths)]
|
| 219 |
-
|
| 220 |
-
refined_fragments = torch.split(processed_latents, adjusted_lengths, dim=2)
|
| 221 |
-
del processed_latents; gc.collect(); torch.cuda.empty_cache()
|
| 222 |
-
|
| 223 |
-
final_video_paths = []
|
| 224 |
-
num_final_fragments = len(refined_fragments)
|
| 225 |
-
|
| 226 |
-
for i, fragment_latent in enumerate(refined_fragments):
|
| 227 |
-
progress(0.85 + (0.1 * (i / num_final_fragments)), desc=f"Finalizando Clipe {i+1}/{num_final_fragments}")
|
| 228 |
-
|
| 229 |
-
base_name = f"fragment_{i}_{int(time.time())}"
|
| 230 |
-
current_path = os.path.join(self.workspace_dir, f"{base_name}_temp.mp4")
|
| 231 |
-
|
| 232 |
-
if use_audio:
|
| 233 |
-
current_path = self._generate_video_and_audio_from_latents(fragment_latent, global_prompt, base_name)
|
| 234 |
-
else:
|
| 235 |
-
pixel_tensor = self.latents_to_pixels(fragment_latent)
|
| 236 |
-
self.save_video_from_tensor(pixel_tensor, current_path, fps=24)
|
| 237 |
-
del pixel_tensor
|
| 238 |
-
|
| 239 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 240 |
-
|
| 241 |
-
if use_hd:
|
| 242 |
-
hd_output_path = os.path.join(self.workspace_dir, f"{base_name}_hd.mp4")
|
| 243 |
-
try:
|
| 244 |
-
hd_specialist_singleton.process_video(input_video_path=current_path, output_video_path=hd_output_path, prompt=" ")
|
| 245 |
-
os.remove(current_path)
|
| 246 |
-
final_video_paths.append(hd_output_path)
|
| 247 |
-
except Exception as e:
|
| 248 |
-
logger.error(f"Falha na masterização HD do fragmento {i+1}: {e}. Usando versão padrão.")
|
| 249 |
-
os.rename(current_path, hd_output_path)
|
| 250 |
-
final_video_paths.append(hd_output_path)
|
| 251 |
-
else:
|
| 252 |
-
final_video_paths.append(current_path)
|
| 253 |
-
|
| 254 |
-
# [LIMPEZA DE MEMÓRIA]
|
| 255 |
-
del refined_fragments
|
| 256 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 257 |
-
|
| 258 |
-
progress(0.98, desc="Montagem final...")
|
| 259 |
-
final_movie_path = os.path.join(self.workspace_dir, f"movie_{int(time.time())}_FINAL.mp4")
|
| 260 |
-
self.concatenate_videos_ffmpeg(final_video_paths, final_movie_path)
|
| 261 |
-
|
| 262 |
-
for path in final_video_paths:
|
| 263 |
-
if os.path.exists(path):
|
| 264 |
-
os.remove(path)
|
| 265 |
-
|
| 266 |
-
logger.info(f"Processo concluído! Vídeo final salvo em: {final_movie_path}")
|
| 267 |
-
yield {"final_path": final_movie_path}
|
| 268 |
-
|
| 269 |
-
def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
|
| 270 |
-
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent_for_audio.mp4")
|
| 271 |
-
pixel_tensor = self.latents_to_pixels(latent_tensor)
|
| 272 |
-
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
|
| 273 |
-
del pixel_tensor; gc.collect(); torch.cuda.empty_cache()
|
| 274 |
-
|
| 275 |
-
try:
|
| 276 |
-
result = subprocess.run(
|
| 277 |
-
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
|
| 278 |
-
capture_output=True, text=True, check=True)
|
| 279 |
-
frag_duration = float(result.stdout.strip())
|
| 280 |
-
except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
|
| 281 |
-
logger.warning(f"ffprobe falhou. Calculando duração manualmente.")
|
| 282 |
-
num_pixel_frames = latent_tensor.shape[2] * 8
|
| 283 |
-
frag_duration = num_pixel_frames / 24.0
|
| 284 |
-
|
| 285 |
-
video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
|
| 286 |
-
video_path=silent_video_path, prompt=audio_prompt,
|
| 287 |
-
duration_seconds=frag_duration)
|
| 288 |
-
|
| 289 |
-
if os.path.exists(silent_video_path):
|
| 290 |
-
os.remove(silent_video_path)
|
| 291 |
-
return video_with_audio_path
|
| 292 |
-
|
| 293 |
-
def refine_latents(self, latents: torch.Tensor, fps: int = 24, **kwargs) -> torch.Tensor:
|
| 294 |
-
"""Invoca o LTX Pool Manager para refinar um tensor latente existente."""
|
| 295 |
-
logger.info(f"Refinando tensor latente com shape {latents.shape}.")
|
| 296 |
-
_, _, num_latent_frames, latent_h, latent_w = latents.shape
|
| 297 |
-
video_scale_factor = getattr(self.vae.config, 'temporal_scale_factor', 8)
|
| 298 |
-
vae_scale_factor = getattr(self.vae.config, 'spatial_downscale_factor', 8)
|
| 299 |
-
|
| 300 |
-
pixel_height = latent_h * vae_scale_factor
|
| 301 |
-
pixel_width = latent_w * vae_scale_factor
|
| 302 |
-
pixel_frames = num_latent_frames * video_scale_factor
|
| 303 |
-
|
| 304 |
-
final_ltx_params = {
|
| 305 |
-
"height": pixel_height, "width": pixel_width, "video_total_frames": pixel_frames,
|
| 306 |
-
"video_fps": fps, "current_fragment_index": int(time.time()),
|
| 307 |
-
**kwargs
|
| 308 |
-
}
|
| 309 |
-
|
| 310 |
-
refined_latents_tensor, _ = self.ltx_manager.refine_latents(latents, **final_ltx_params)
|
| 311 |
-
|
| 312 |
-
if refined_latents_tensor is None:
|
| 313 |
-
logger.warning("O refinamento falhou (provavelmente por falta de memória). Retornando tensor original não refinado.")
|
| 314 |
-
return latents
|
| 315 |
-
|
| 316 |
-
logger.info(f"Retornando tensor latente refinado com shape: {refined_latents_tensor.shape}")
|
| 317 |
-
return refined_latents_tensor
|
| 318 |
-
|
| 319 |
-
def upscale_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
| 320 |
-
logger.info(f"Realizando upscale em tensor latente com shape {latents.shape}.")
|
| 321 |
-
return upscaler_specialist_singleton.upscale(latents)
|
| 322 |
-
|
| 323 |
-
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
|
| 324 |
-
final_ltx_params = {
|
| 325 |
-
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
|
| 326 |
-
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
|
| 327 |
-
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
|
| 328 |
-
}
|
| 329 |
-
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
|
| 330 |
-
gc.collect()
|
| 331 |
-
torch.cuda.empty_cache()
|
| 332 |
-
return new_full_latents
|
| 333 |
-
|
| 334 |
-
def _quantize_to_multiple(self, n, m):
|
| 335 |
-
if m == 0: return n
|
| 336 |
-
quantized = int(round(n / m) * m)
|
| 337 |
-
return m if n > 0 and quantized == 0 else quantized
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|