Update managers/audio_specialist.py
Browse files- managers/audio_specialist.py +217 -138
managers/audio_specialist.py
CHANGED
|
@@ -1,163 +1,242 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
| 3 |
-
# Copyright (C)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import torch
|
| 6 |
-
import logging
|
| 7 |
-
import subprocess
|
| 8 |
import os
|
| 9 |
-
import time
|
| 10 |
-
import yaml
|
| 11 |
import gc
|
|
|
|
|
|
|
|
|
|
| 12 |
from pathlib import Path
|
|
|
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
try:
|
| 17 |
-
from mmaudio.eval_utils import ModelConfig, all_model_cfg, generate as mmaudio_generate, load_video, make_video
|
| 18 |
-
from mmaudio.model.flow_matching import FlowMatching
|
| 19 |
-
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 20 |
-
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 21 |
-
from mmaudio.model.sequence_config import SequenceConfig
|
| 22 |
-
except ImportError:
|
| 23 |
-
raise ImportError("MMAudio não foi encontrado. Por favor, instale-o a partir do GitHub: git+https://github.com/hkchengrex/MMAudio.git")
|
| 24 |
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
"""
|
| 29 |
-
|
| 30 |
-
|
| 31 |
"""
|
| 32 |
-
def __init__(self, workspace_dir):
|
| 33 |
-
self.device =
|
| 34 |
-
self.
|
| 35 |
-
self.dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
|
| 36 |
self.workspace_dir = workspace_dir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
self.
|
|
|
|
| 44 |
|
| 45 |
-
def
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
self.feature_utils = self.feature_utils.eval()
|
| 67 |
-
self.net.to(self.cpu_device)
|
| 68 |
-
self.feature_utils.to(self.cpu_device)
|
| 69 |
-
logger.info("Especialista de áudio pronto na CPU.")
|
| 70 |
-
except Exception as e:
|
| 71 |
-
logger.error(f"Falha ao carregar modelos de áudio: {e}", exc_info=True)
|
| 72 |
-
self.net = None
|
| 73 |
-
|
| 74 |
-
def to_gpu(self):
|
| 75 |
-
"""Move os modelos e utilitários para a GPU antes da inferência."""
|
| 76 |
-
if self.device == 'cpu': return
|
| 77 |
-
logger.info(f"Movendo especialista de áudio para a GPU ({self.device})...")
|
| 78 |
-
self.net.to(self.device, self.dtype)
|
| 79 |
-
self.feature_utils.to(self.device, self.dtype)
|
| 80 |
-
|
| 81 |
-
def to_cpu(self):
|
| 82 |
-
"""Move os modelos de volta para a CPU e limpa a VRAM após a inferência."""
|
| 83 |
-
if self.device == 'cpu': return
|
| 84 |
-
logger.info("Descarregando especialista de áudio da GPU...")
|
| 85 |
-
self.net.to(self.cpu_device)
|
| 86 |
-
self.feature_utils.to(self.cpu_device)
|
| 87 |
-
gc.collect()
|
| 88 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 89 |
-
|
| 90 |
-
def generate_audio_for_video(self, video_path: str, prompt: str, duration_seconds: float, output_path_override: str = None) -> str:
|
| 91 |
-
"""
|
| 92 |
-
Gera áudio para um arquivo de vídeo, aplicando um prompt negativo para evitar fala.
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
raise gr.Error("Modelo MMAudio não está carregado. Não é possível gerar áudio.")
|
| 104 |
-
|
| 105 |
-
logger.info("------------------------------------------------------")
|
| 106 |
-
logger.info("--- Gerando Áudio para Fragmento de Vídeo ---")
|
| 107 |
-
logger.info(f"--- Vídeo Fragmento: {os.path.basename(video_path)}")
|
| 108 |
-
logger.info(f"--- Duração: {duration_seconds:.2f}s")
|
| 109 |
-
logger.info(f"--- Prompt (Descrição da Cena): '{prompt}'")
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
if
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
try:
|
| 123 |
-
self.
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
finally:
|
| 153 |
-
self.
|
| 154 |
-
|
| 155 |
-
# Singleton
|
| 156 |
-
|
| 157 |
-
with open("config.yaml", 'r') as f:
|
| 158 |
-
config = yaml.safe_load(f)
|
| 159 |
-
WORKSPACE_DIR = config['application']['workspace_dir']
|
| 160 |
-
audio_specialist_singleton = AudioSpecialist(workspace_dir=WORKSPACE_DIR)
|
| 161 |
-
except Exception as e:
|
| 162 |
-
logger.error(f"Não foi possível inicializar o AudioSpecialist: {e}", exc_info=True)
|
| 163 |
-
audio_specialist_singleton = None
|
|
|
|
| 1 |
+
# hd_specialist.py
|
| 2 |
+
#
|
| 3 |
+
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
+
#
|
| 5 |
+
# Version: 2.2.0
|
| 6 |
+
#
|
| 7 |
+
# This file implements the HD Specialist (Δ+), which uses the SeedVR model
|
| 8 |
+
# for video super-resolution. It has been refactored to be self-contained by
|
| 9 |
+
# automatically cloning its own dependencies from the official SeedVR repository
|
| 10 |
+
# if they are not found locally. This removes the need for manual file copying
|
| 11 |
+
# and makes the ADUC-SDR framework more robust and portable.
|
| 12 |
|
| 13 |
import torch
|
|
|
|
|
|
|
| 14 |
import os
|
|
|
|
|
|
|
| 15 |
import gc
|
| 16 |
+
import logging
|
| 17 |
+
import sys
|
| 18 |
+
import subprocess
|
| 19 |
from pathlib import Path
|
| 20 |
+
from urllib.parse import urlparse
|
| 21 |
+
from torch.hub import download_url_to_file
|
| 22 |
import gradio as gr
|
| 23 |
+
import mediapy
|
| 24 |
+
from einops import rearrange
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
+
# --- Dependency Management ---
|
| 29 |
+
DEPS_DIR = Path("./deps")
|
| 30 |
+
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 31 |
+
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
| 32 |
+
|
| 33 |
+
def _load_file_from_url(url, model_dir='./', file_name=None):
|
| 34 |
+
"""Helper function to download files from a URL to a local directory."""
|
| 35 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 36 |
+
filename = file_name or os.path.basename(urlparse(url).path)
|
| 37 |
+
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
| 38 |
+
if not os.path.exists(cached_file):
|
| 39 |
+
logger.info(f'Downloading: "{url}" to {cached_file}')
|
| 40 |
+
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
|
| 41 |
+
return cached_file
|
| 42 |
+
|
| 43 |
+
class HDSpecialist:
|
| 44 |
"""
|
| 45 |
+
Implements the HD Specialist (Δ+) using the SeedVR infrastructure.
|
| 46 |
+
Manages model loading, inference, and memory on demand.
|
| 47 |
"""
|
| 48 |
+
def __init__(self, workspace_dir="deformes_workspace"):
|
| 49 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 50 |
+
self.runner = None
|
|
|
|
| 51 |
self.workspace_dir = workspace_dir
|
| 52 |
+
self.is_initialized = False
|
| 53 |
+
self._seedvr_modules_loaded = False
|
| 54 |
+
self._setup_dependencies()
|
| 55 |
+
logger.info("HD Specialist (SeedVR) initialized. Dependencies checked. Model will be loaded on demand.")
|
| 56 |
+
|
| 57 |
+
def _setup_dependencies(self):
|
| 58 |
+
"""
|
| 59 |
+
Checks for the SeedVR repository locally. If not found, clones it.
|
| 60 |
+
Then, it adds the repository to the Python path to make its modules importable.
|
| 61 |
+
"""
|
| 62 |
+
if not SEEDVR_REPO_DIR.exists():
|
| 63 |
+
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
|
| 64 |
+
try:
|
| 65 |
+
DEPS_DIR.mkdir(exist_ok=True)
|
| 66 |
+
subprocess.run(
|
| 67 |
+
["git", "clone", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
|
| 68 |
+
check=True, capture_output=True, text=True
|
| 69 |
+
)
|
| 70 |
+
logger.info("SeedVR repository cloned successfully.")
|
| 71 |
+
except subprocess.CalledProcessError as e:
|
| 72 |
+
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
|
| 73 |
+
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
|
| 74 |
+
else:
|
| 75 |
+
logger.info("Found local SeedVR repository.")
|
| 76 |
|
| 77 |
+
# Add the cloned repo to Python's path to allow direct imports
|
| 78 |
+
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 79 |
+
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 80 |
+
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
|
| 81 |
+
|
| 82 |
+
def _lazy_load_seedvr_modules(self):
|
| 83 |
+
"""
|
| 84 |
+
Dynamically imports SeedVR modules only when needed.
|
| 85 |
+
This prevents ImportError if the class is instantiated before dependencies are ready.
|
| 86 |
+
"""
|
| 87 |
+
if self._seedvr_modules_loaded:
|
| 88 |
+
return
|
| 89 |
+
|
| 90 |
+
global VideoDiffusionInfer, load_config, set_seed, DivisibleCrop, NaResize, Rearrange, wavelet_reconstruction, Compose, Lambda, Normalize, read_video, OmegaConf
|
| 91 |
+
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
|
| 92 |
+
from common.config import load_config
|
| 93 |
+
from common.seed import set_seed
|
| 94 |
+
from data.image.transforms.divisible_crop import DivisibleCrop
|
| 95 |
+
from data.image.transforms.na_resize import NaResize
|
| 96 |
+
from data.video.transforms.rearrange import Rearrange
|
| 97 |
+
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
|
| 98 |
+
from torchvision.transforms import Compose, Lambda, Normalize
|
| 99 |
+
from torchvision.io.video import read_video
|
| 100 |
+
from omegaconf import OmegaConf
|
| 101 |
|
| 102 |
+
self._seedvr_modules_loaded = True
|
| 103 |
+
logger.info("SeedVR modules have been dynamically loaded.")
|
| 104 |
|
| 105 |
+
def _download_models(self):
|
| 106 |
+
"""Downloads the necessary checkpoints for SeedVR2."""
|
| 107 |
+
logger.info("Verifying and downloading SeedVR2 models...")
|
| 108 |
+
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
|
| 109 |
+
ckpt_dir.mkdir(exist_ok=True)
|
| 110 |
+
|
| 111 |
+
pretrain_model_urls = {
|
| 112 |
+
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
|
| 113 |
+
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
|
| 114 |
+
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
|
| 115 |
+
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
|
| 116 |
+
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
for key, url in pretrain_model_urls.items():
|
| 120 |
+
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
|
| 121 |
|
| 122 |
+
logger.info("SeedVR2 models downloaded successfully.")
|
| 123 |
+
|
| 124 |
+
def _initialize_runner(self, model_version: str):
|
| 125 |
+
"""Loads and configures the SeedVR model on demand based on the selected version."""
|
| 126 |
+
if self.runner is not None:
|
| 127 |
+
return
|
| 128 |
+
|
| 129 |
+
self._lazy_load_seedvr_modules()
|
| 130 |
+
self._download_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
logger.info(f"Initializing SeedVR2 {model_version} runner...")
|
| 133 |
+
if model_version == '3B':
|
| 134 |
+
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
|
| 135 |
+
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
|
| 136 |
+
elif model_version == '7B':
|
| 137 |
+
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
|
| 138 |
+
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
|
| 139 |
+
else:
|
| 140 |
+
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
|
| 141 |
|
| 142 |
+
config = load_config(str(config_path))
|
| 143 |
+
|
| 144 |
+
self.runner = VideoDiffusionInfer(config)
|
| 145 |
+
OmegaConf.set_readonly(self.runner.config, False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
|
| 148 |
+
self.runner.configure_vae_model()
|
| 149 |
|
| 150 |
+
if hasattr(self.runner.vae, "set_memory_limit"):
|
| 151 |
+
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
|
| 152 |
+
|
| 153 |
+
self.is_initialized = True
|
| 154 |
+
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
|
| 155 |
|
| 156 |
+
def _unload_runner(self):
|
| 157 |
+
"""Removes the runner from VRAM to free resources."""
|
| 158 |
+
if self.runner is not None:
|
| 159 |
+
del self.runner
|
| 160 |
+
self.runner = None
|
| 161 |
+
gc.collect()
|
| 162 |
+
torch.cuda.empty_cache()
|
| 163 |
+
self.is_initialized = False
|
| 164 |
+
logger.info("SeedVR2 runner unloaded from VRAM.")
|
| 165 |
|
| 166 |
+
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
|
| 167 |
+
model_version: str = '3B', steps: int = 50, seed: int = 666,
|
| 168 |
+
progress: gr.Progress = None) -> str:
|
| 169 |
+
"""Applies HD enhancement to a video using the SeedVR logic."""
|
| 170 |
try:
|
| 171 |
+
self._initialize_runner(model_version)
|
| 172 |
+
set_seed(seed, same_across_ranks=True)
|
| 173 |
+
|
| 174 |
+
self.runner.config.diffusion.timesteps.sampling.steps = steps
|
| 175 |
+
self.runner.configure_diffusion()
|
| 176 |
+
|
| 177 |
+
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
|
| 178 |
+
res_h, res_w = video_tensor.shape[-2:]
|
| 179 |
+
|
| 180 |
+
video_transform = Compose([
|
| 181 |
+
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
|
| 182 |
+
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
|
| 183 |
+
DivisibleCrop((16, 16)),
|
| 184 |
+
Normalize(0.5, 0.5),
|
| 185 |
+
Rearrange("t c h w -> c t h w"),
|
| 186 |
+
])
|
| 187 |
+
|
| 188 |
+
cond_latents = [video_transform(video_tensor.to(self.device))]
|
| 189 |
+
input_videos = cond_latents
|
| 190 |
+
|
| 191 |
+
self.runner.dit.to("cpu")
|
| 192 |
+
self.runner.vae.to(self.device)
|
| 193 |
+
cond_latents = self.runner.vae_encode(cond_latents)
|
| 194 |
+
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 195 |
+
self.runner.dit.to(self.device)
|
| 196 |
+
|
| 197 |
+
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
|
| 198 |
+
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
|
| 199 |
+
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
|
| 200 |
+
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
|
| 201 |
+
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
|
| 202 |
+
|
| 203 |
+
noises = [torch.randn_like(latent) for latent in cond_latents]
|
| 204 |
+
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
|
| 205 |
+
|
| 206 |
+
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
|
| 207 |
+
video_tensors = self.runner.inference(
|
| 208 |
+
noises=noises,
|
| 209 |
+
conditions=conditions,
|
| 210 |
+
dit_offload=True,
|
| 211 |
+
**text_embeds_dict,
|
| 212 |
)
|
| 213 |
+
|
| 214 |
+
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 215 |
+
|
| 216 |
+
self.runner.vae.to(self.device)
|
| 217 |
+
samples = self.runner.vae_decode(video_tensors)
|
| 218 |
+
|
| 219 |
+
final_sample = samples[0]
|
| 220 |
+
input_video_sample = input_videos[0]
|
| 221 |
+
|
| 222 |
+
if final_sample.shape[1] < input_video_sample.shape[1]:
|
| 223 |
+
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
|
| 224 |
+
|
| 225 |
+
final_sample = wavelet_reconstruction(
|
| 226 |
+
rearrange(final_sample, "c t h w -> t c h w"),
|
| 227 |
+
rearrange(input_video_sample, "c t h w -> t c h w")
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
final_sample = rearrange(final_sample, "t c h w -> t h w c")
|
| 231 |
+
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 232 |
+
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
| 233 |
+
|
| 234 |
+
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 235 |
+
logger.info(f"HD Mastered video saved to: {output_video_path}")
|
| 236 |
+
return output_video_path
|
| 237 |
+
|
| 238 |
finally:
|
| 239 |
+
self._unload_runner()
|
| 240 |
+
|
| 241 |
+
# Singleton instance
|
| 242 |
+
hd_specialist_singleton = HDSpecialist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|