Update deformes4D_engine.py
Browse files- deformes4D_engine.py +174 -176
deformes4D_engine.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
# deformes4D_engine.py
|
| 2 |
-
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 3 |
#
|
| 4 |
-
#
|
| 5 |
-
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
|
| 6 |
#
|
| 7 |
-
#
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
import os
|
| 13 |
import time
|
|
@@ -21,10 +23,10 @@ import gradio as gr
|
|
| 21 |
import subprocess
|
| 22 |
import gc
|
| 23 |
import shutil
|
|
|
|
| 24 |
|
| 25 |
from ltx_manager_helpers import ltx_manager_singleton
|
| 26 |
-
from gemini_helpers import gemini_singleton
|
| 27 |
-
# [REATORADO] Importa o novo especialista
|
| 28 |
from latent_enhancer_specialist import latent_enhancer_specialist_singleton
|
| 29 |
from hd_specialist import hd_specialist_singleton
|
| 30 |
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
|
@@ -34,23 +36,22 @@ logger = logging.getLogger(__name__)
|
|
| 34 |
|
| 35 |
@dataclass
|
| 36 |
class LatentConditioningItem:
|
| 37 |
-
"""
|
| 38 |
latent_tensor: torch.Tensor
|
| 39 |
media_frame_number: int
|
| 40 |
conditioning_strength: float
|
| 41 |
|
| 42 |
class Deformes4DEngine:
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
-
|
| 46 |
"""
|
| 47 |
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
|
| 48 |
self.ltx_manager = ltx_manager
|
| 49 |
self.workspace_dir = workspace_dir
|
| 50 |
self._vae = None
|
| 51 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 52 |
-
logger.info("
|
| 53 |
-
# Cria o diretório de workspace se não existir
|
| 54 |
os.makedirs(self.workspace_dir, exist_ok=True)
|
| 55 |
|
| 56 |
|
|
@@ -61,7 +62,8 @@ class Deformes4DEngine:
|
|
| 61 |
self._vae.to(self.device); self._vae.eval()
|
| 62 |
return self._vae
|
| 63 |
|
| 64 |
-
# ---
|
|
|
|
| 65 |
@torch.no_grad()
|
| 66 |
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
|
| 67 |
tensor = tensor.to(self.device, dtype=self.vae.dtype)
|
|
@@ -91,43 +93,43 @@ class Deformes4DEngine:
|
|
| 91 |
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 92 |
tensor = (tensor * 2.0) - 1.0
|
| 93 |
return self.pixels_to_latents(tensor)
|
| 94 |
-
|
| 95 |
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str):
|
| 96 |
-
if not video_paths: raise gr.Error("
|
| 97 |
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 98 |
with open(list_file_path, 'w', encoding='utf-8') as f:
|
| 99 |
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
|
| 100 |
-
|
| 101 |
-
# Tenta usar aceleração de hardware (GPU) para a concatenação, se disponível
|
| 102 |
cmd_list = ['ffmpeg', '-y', '-hwaccel', 'auto', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 103 |
-
logger.info(f"
|
| 104 |
try:
|
| 105 |
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 106 |
except subprocess.CalledProcessError as e:
|
| 107 |
-
logger.error(f"
|
| 108 |
-
|
| 109 |
-
logger.info("Tentando concatenar novamente sem aceleração de hardware...")
|
| 110 |
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 111 |
try:
|
| 112 |
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 113 |
except subprocess.CalledProcessError as e_fallback:
|
| 114 |
-
logger.error(f"
|
| 115 |
-
raise gr.Error(f"
|
| 116 |
-
|
| 117 |
-
# ---
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
| 126 |
FPS = 24
|
| 127 |
FRAMES_PER_LATENT_CHUNK = 8
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
run_timestamp = int(time.time())
|
| 132 |
temp_latent_dir = os.path.join(self.workspace_dir, f"temp_latents_{run_timestamp}")
|
| 133 |
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
|
|
@@ -140,35 +142,29 @@ class Deformes4DEngine:
|
|
| 140 |
|
| 141 |
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
|
| 142 |
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
|
| 143 |
-
|
| 144 |
-
base_ltx_params = {"guidance_scale":
|
| 145 |
-
refine_ltx_params = {"motion_prompt": "", "guidance_scale": 1.0, "denoise_strength": 0.35, "refine_steps": 12}
|
| 146 |
-
|
| 147 |
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
|
| 148 |
story_history = ""
|
| 149 |
-
target_resolution_tuple = (video_resolution, video_resolution)
|
| 150 |
-
|
| 151 |
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 152 |
-
latent_fragment_paths = []
|
| 153 |
-
|
| 154 |
-
if len(keyframe_paths) < 2: raise gr.Error(f"
|
| 155 |
-
|
| 156 |
num_transitions_to_generate = len(keyframe_paths) - 1
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
logger.info("--- INICIANDO ETAPA 1: Geração de Fragmentos Latentes ---")
|
| 160 |
for i in range(num_transitions_to_generate):
|
| 161 |
fragment_index = i + 1
|
| 162 |
-
progress(i / num_transitions_to_generate, desc=f"
|
| 163 |
-
|
| 164 |
-
# (Lógica de decisão do Gemini e preparação de âncoras - inalterada)
|
| 165 |
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
|
| 166 |
start_keyframe_path = keyframe_paths[i]
|
| 167 |
destination_keyframe_path = keyframe_paths[i + 1]
|
| 168 |
-
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "
|
| 169 |
-
|
|
|
|
| 170 |
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 171 |
-
story_history += f"\n-
|
| 172 |
conditioning_items = []
|
| 173 |
if eco_latent_for_next_loop is None:
|
| 174 |
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
|
|
@@ -178,165 +174,167 @@ class Deformes4DEngine:
|
|
| 178 |
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
|
| 179 |
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
|
| 180 |
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
|
| 181 |
-
|
| 182 |
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
| 185 |
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
|
| 186 |
-
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
|
| 187 |
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
|
| 188 |
-
|
| 189 |
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
|
| 190 |
latents_video = latents_video[:, :, 1:, :, :]
|
| 191 |
-
|
| 192 |
-
del last_trim, latents_brutos
|
| 193 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 194 |
-
|
| 195 |
if transition_type == "cut":
|
| 196 |
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 197 |
-
|
| 198 |
-
# [REATORADO] Mover latente para CPU e salvar no disco para liberar VRAM
|
| 199 |
cpu_latent = latents_video.cpu()
|
| 200 |
latent_path = os.path.join(temp_latent_dir, f"latent_fragment_{i:04d}.pt")
|
| 201 |
torch.save(cpu_latent, latent_path)
|
| 202 |
latent_fragment_paths.append(latent_path)
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
|
| 205 |
-
gc.collect()
|
| 206 |
-
|
| 207 |
-
del eco_latent_for_next_loop, dejavu_latent_for_next_loop
|
| 208 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 209 |
-
|
| 210 |
-
# --- ETAPA 2: PROCESSAR LATENTES EM LOTES (CHUNKS) ---
|
| 211 |
-
logger.info(f"--- INICIANDO ETAPA 2: Processamento de {len(latent_fragment_paths)} latentes em lotes de {LATENT_PROCESSING_CHUNK_SIZE} ---")
|
| 212 |
final_video_clip_paths = []
|
| 213 |
-
num_chunks = -(-len(latent_fragment_paths) // LATENT_PROCESSING_CHUNK_SIZE)
|
| 214 |
-
|
| 215 |
for i in range(num_chunks):
|
| 216 |
chunk_start_index = i * LATENT_PROCESSING_CHUNK_SIZE
|
| 217 |
chunk_end_index = chunk_start_index + LATENT_PROCESSING_CHUNK_SIZE
|
| 218 |
chunk_paths = latent_fragment_paths[chunk_start_index:chunk_end_index]
|
| 219 |
-
|
| 220 |
-
progress(i / num_chunks, desc=f"Processando Lote {i+1}/{num_chunks}")
|
| 221 |
-
|
| 222 |
-
# Carrega os tensores do lote atual do disco para a GPU
|
| 223 |
tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
|
| 224 |
-
|
| 225 |
-
# Concatena os tensores do lote, removendo o latente de sobreposição
|
| 226 |
-
tensors_para_concatenar = [
|
| 227 |
-
frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag
|
| 228 |
-
for j, frag in enumerate(tensors_in_chunk)
|
| 229 |
-
]
|
| 230 |
sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
|
| 231 |
-
del tensors_in_chunk, tensors_para_concatenar
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
logger.info(f"Lote {i+1} concatenado. Shape do sub-latente: {sub_group_latent.shape}")
|
| 235 |
-
|
| 236 |
-
# 1. (Opcional) Upscaler Latente
|
| 237 |
-
if use_upscaler:
|
| 238 |
-
logger.info(f"Aplicando Upscaler no lote {i+1}...")
|
| 239 |
-
sub_group_latent = latent_enhancer_specialist_singleton.upscale(sub_group_latent)
|
| 240 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 241 |
-
|
| 242 |
-
# 2. Decodificar Latente para Vídeo (com ou sem áudio)
|
| 243 |
base_name = f"clip_{i:04d}_{run_timestamp}"
|
| 244 |
-
current_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
current_clip_path = self._generate_video_and_audio_from_latents(sub_group_latent, global_prompt, base_name)
|
| 249 |
-
else:
|
| 250 |
-
pixel_tensor = self.latents_to_pixels(sub_group_latent)
|
| 251 |
-
self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=FPS)
|
| 252 |
-
del pixel_tensor
|
| 253 |
-
|
| 254 |
-
del sub_group_latent
|
| 255 |
-
gc.collect(); torch.cuda.empty_cache()
|
| 256 |
-
|
| 257 |
-
# 3. (Opcional) Masterização HD
|
| 258 |
-
if use_hd:
|
| 259 |
-
logger.info(f"Aplicando masterização HD no clipe {i+1}...")
|
| 260 |
-
hd_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}_hd.mp4")
|
| 261 |
-
try:
|
| 262 |
-
hd_specialist_singleton.process_video(input_video_path=current_clip_path, output_video_path=hd_clip_path, prompt=global_prompt)
|
| 263 |
-
# Apaga o clipe não-HD para economizar espaço
|
| 264 |
-
if os.path.exists(current_clip_path) and current_clip_path != hd_clip_path:
|
| 265 |
-
os.remove(current_clip_path)
|
| 266 |
-
current_clip_path = hd_clip_path
|
| 267 |
-
except Exception as e:
|
| 268 |
-
logger.error(f"Falha na masterização HD do clipe {i+1}: {e}. Usando versão padrão.")
|
| 269 |
-
|
| 270 |
-
# 4. Adicionar caminho do clipe final à lista
|
| 271 |
final_video_clip_paths.append(current_clip_path)
|
| 272 |
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
# # [REATORADO] Chamada para o novo especialista
|
| 276 |
-
# # OBS: Refinamento foi desativado conforme solicitado por degradar a lógica das keyframes.
|
| 277 |
-
|
| 278 |
-
# --- ETAPA 3: MONTAGEM FINAL ---
|
| 279 |
-
progress(0.98, desc="Montagem final dos clipes...")
|
| 280 |
-
final_video_path = os.path.join(self.workspace_dir, f"filme_final_{run_timestamp}.mp4")
|
| 281 |
self.concatenate_videos_ffmpeg(final_video_clip_paths, final_video_path)
|
| 282 |
-
|
| 283 |
-
# --- ETAPA 4: LIMPEZA ---
|
| 284 |
-
logger.info("Limpando arquivos temporários...")
|
| 285 |
try:
|
| 286 |
-
shutil.rmtree(temp_latent_dir)
|
| 287 |
shutil.rmtree(temp_video_clips_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
concat_list_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 289 |
-
if os.path.exists(concat_list_path):
|
| 290 |
-
os.remove(concat_list_path)
|
| 291 |
except OSError as e:
|
| 292 |
-
logger.warning(f"
|
| 293 |
-
|
| 294 |
-
logger.info(f"Processo concluído! Vídeo final salvo em: {final_video_path}")
|
| 295 |
yield {"final_path": final_video_path}
|
| 296 |
|
| 297 |
-
def
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
try:
|
|
|
|
| 307 |
result = subprocess.run(
|
| 308 |
-
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1",
|
| 309 |
capture_output=True, text=True, check=True)
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
| 328 |
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
|
|
|
|
| 329 |
final_ltx_params = {
|
| 330 |
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
|
| 331 |
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
|
| 332 |
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
|
| 333 |
}
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
torch.cuda.empty_cache()
|
| 337 |
-
return new_full_latents
|
| 338 |
-
|
| 339 |
def _quantize_to_multiple(self, n, m):
|
|
|
|
| 340 |
if m == 0: return n
|
| 341 |
quantized = int(round(n / m) * m)
|
| 342 |
return m if n > 0 and quantized == 0 else quantized
|
|
|
|
| 1 |
# deformes4D_engine.py
|
|
|
|
| 2 |
#
|
| 3 |
+
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
|
|
|
| 4 |
#
|
| 5 |
+
# Version: 2.0.0
|
| 6 |
+
#
|
| 7 |
+
# This file contains the Deformes4D Engine, which acts as the primary "Editor" or
|
| 8 |
+
# "Film Crew" specialist within the ADUC-SDR architecture. It implements the Camera (Ψ)
|
| 9 |
+
# and Distiller (Δ) concepts. Its core responsibilities include the low-level orchestration
|
| 10 |
+
# of video fragment generation (calling the LTX specialist), latent manipulation (calling
|
| 11 |
+
# the enhancer specialist), and final rendering/post-production tasks like HD mastering
|
| 12 |
+
# and audio generation. It executes the specific commands delegated by the AducOrchestrator.
|
| 13 |
|
| 14 |
import os
|
| 15 |
import time
|
|
|
|
| 23 |
import subprocess
|
| 24 |
import gc
|
| 25 |
import shutil
|
| 26 |
+
from pathlib import Path
|
| 27 |
|
| 28 |
from ltx_manager_helpers import ltx_manager_singleton
|
| 29 |
+
from gemini_helpers import gemini_singleton
|
|
|
|
| 30 |
from latent_enhancer_specialist import latent_enhancer_specialist_singleton
|
| 31 |
from hd_specialist import hd_specialist_singleton
|
| 32 |
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
|
|
|
| 36 |
|
| 37 |
@dataclass
|
| 38 |
class LatentConditioningItem:
|
| 39 |
+
"""Represents a conditioning anchor in the latent space for the Camera (Ψ)."""
|
| 40 |
latent_tensor: torch.Tensor
|
| 41 |
media_frame_number: int
|
| 42 |
conditioning_strength: float
|
| 43 |
|
| 44 |
class Deformes4DEngine:
|
| 45 |
"""
|
| 46 |
+
Implements the Camera (Ψ) and Distiller (Δ) of the ADUC-SDR architecture.
|
| 47 |
+
Orchestrates the generation, latent post-production, and final rendering of video fragments.
|
| 48 |
"""
|
| 49 |
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
|
| 50 |
self.ltx_manager = ltx_manager
|
| 51 |
self.workspace_dir = workspace_dir
|
| 52 |
self._vae = None
|
| 53 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 54 |
+
logger.info("Deformes4D Specialist (ADUC-SDR Executor) initialized.")
|
|
|
|
| 55 |
os.makedirs(self.workspace_dir, exist_ok=True)
|
| 56 |
|
| 57 |
|
|
|
|
| 62 |
self._vae.to(self.device); self._vae.eval()
|
| 63 |
return self._vae
|
| 64 |
|
| 65 |
+
# --- HELPER METHODS ---
|
| 66 |
+
|
| 67 |
@torch.no_grad()
|
| 68 |
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
|
| 69 |
tensor = tensor.to(self.device, dtype=self.vae.dtype)
|
|
|
|
| 93 |
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 94 |
tensor = (tensor * 2.0) - 1.0
|
| 95 |
return self.pixels_to_latents(tensor)
|
| 96 |
+
|
| 97 |
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str):
|
| 98 |
+
if not video_paths: raise gr.Error("No video fragments to assemble.")
|
| 99 |
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 100 |
with open(list_file_path, 'w', encoding='utf-8') as f:
|
| 101 |
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
|
| 102 |
+
|
|
|
|
| 103 |
cmd_list = ['ffmpeg', '-y', '-hwaccel', 'auto', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 104 |
+
logger.info(f"Concatenating {len(video_paths)} video clips into {output_path}...")
|
| 105 |
try:
|
| 106 |
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 107 |
except subprocess.CalledProcessError as e:
|
| 108 |
+
logger.error(f"FFmpeg error: {e.stderr}")
|
| 109 |
+
logger.info("Attempting concatenation again without hardware acceleration...")
|
|
|
|
| 110 |
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 111 |
try:
|
| 112 |
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 113 |
except subprocess.CalledProcessError as e_fallback:
|
| 114 |
+
logger.error(f"FFmpeg error (fallback): {e_fallback.stderr}")
|
| 115 |
+
raise gr.Error(f"Failed to assemble the final video. Details: {e_fallback.stderr}")
|
| 116 |
+
|
| 117 |
+
# --- CORE ADUC-SDR LOGIC ---
|
| 118 |
+
|
| 119 |
+
def generate_original_movie(self, keyframes: list, global_prompt: str, storyboard: list,
|
| 120 |
+
seconds_per_fragment: float, trim_percent: int,
|
| 121 |
+
handler_strength: float, destination_convergence_strength: float,
|
| 122 |
+
video_resolution: int, use_continuity_director: bool,
|
| 123 |
+
guidance_scale: float, stg_scale: float, num_inference_steps: int,
|
| 124 |
+
progress: gr.Progress = gr.Progress()):
|
| 125 |
+
"""
|
| 126 |
+
Step 3: Production. Generates the original master video from keyframes.
|
| 127 |
+
This involves generating latent tensors for each segment and then decoding them into a video file.
|
| 128 |
+
"""
|
| 129 |
FPS = 24
|
| 130 |
FRAMES_PER_LATENT_CHUNK = 8
|
| 131 |
+
LATENT_PROCESSING_CHUNK_SIZE = 4
|
| 132 |
+
|
|
|
|
| 133 |
run_timestamp = int(time.time())
|
| 134 |
temp_latent_dir = os.path.join(self.workspace_dir, f"temp_latents_{run_timestamp}")
|
| 135 |
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
|
|
|
|
| 142 |
|
| 143 |
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
|
| 144 |
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
|
| 145 |
+
|
| 146 |
+
base_ltx_params = {"guidance_scale": guidance_scale, "stg_scale": stg_scale, "num_inference_steps": num_inference_steps, "rescaling_scale": 0.15, "image_cond_noise_scale": 0.00}
|
|
|
|
|
|
|
| 147 |
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
|
| 148 |
story_history = ""
|
| 149 |
+
target_resolution_tuple = (video_resolution, video_resolution)
|
|
|
|
| 150 |
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 151 |
+
latent_fragment_paths = []
|
| 152 |
+
|
| 153 |
+
if len(keyframe_paths) < 2: raise gr.Error(f"Generation requires at least 2 keyframes. You provided {len(keyframe_paths)}.")
|
|
|
|
| 154 |
num_transitions_to_generate = len(keyframe_paths) - 1
|
| 155 |
+
|
| 156 |
+
logger.info("--- STARTING STAGE 1: Latent Fragment Generation ---")
|
|
|
|
| 157 |
for i in range(num_transitions_to_generate):
|
| 158 |
fragment_index = i + 1
|
| 159 |
+
progress(i / num_transitions_to_generate, desc=f"Generating Latent {fragment_index}/{num_transitions_to_generate}")
|
|
|
|
|
|
|
| 160 |
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
|
| 161 |
start_keyframe_path = keyframe_paths[i]
|
| 162 |
destination_keyframe_path = keyframe_paths[i + 1]
|
| 163 |
+
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "The final scene."
|
| 164 |
+
logger.info(f"Calling Gemini to generate cinematic decision for fragment {fragment_index}...")
|
| 165 |
+
decision = gemini_singleton.get_cinematic_decision(global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, storyboard[i - 1] if i > 0 else "The beginning.", storyboard[i], future_story_prompt)
|
| 166 |
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 167 |
+
story_history += f"\n- Act {fragment_index}: {motion_prompt}"
|
| 168 |
conditioning_items = []
|
| 169 |
if eco_latent_for_next_loop is None:
|
| 170 |
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
|
|
|
|
| 174 |
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
|
| 175 |
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
|
| 176 |
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
|
|
|
|
| 177 |
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
|
| 178 |
+
logger.info(f"Calling LTX to generate video latents for fragment {fragment_index} ({total_frames_brutos} frames)...")
|
| 179 |
+
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
|
| 180 |
+
num_latent_frames = latents_brutos.shape[2]
|
| 181 |
+
logger.info(f"LTX responded with a latent tensor of shape {latents_brutos.shape}, representing ~{num_latent_frames * 8 + 1} video frames at {FPS} FPS.")
|
| 182 |
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
|
| 183 |
+
eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
|
| 184 |
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
|
|
|
|
| 185 |
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
|
| 186 |
latents_video = latents_video[:, :, 1:, :, :]
|
| 187 |
+
del last_trim, latents_brutos; gc.collect(); torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
| 188 |
if transition_type == "cut":
|
| 189 |
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
|
|
|
|
|
|
| 190 |
cpu_latent = latents_video.cpu()
|
| 191 |
latent_path = os.path.join(temp_latent_dir, f"latent_fragment_{i:04d}.pt")
|
| 192 |
torch.save(cpu_latent, latent_path)
|
| 193 |
latent_fragment_paths.append(latent_path)
|
| 194 |
+
del latents_video, cpu_latent; gc.collect()
|
| 195 |
+
del eco_latent_for_next_loop, dejavu_latent_for_next_loop; gc.collect(); torch.cuda.empty_cache()
|
| 196 |
|
| 197 |
+
logger.info(f"--- STARTING STAGE 2: Processing {len(latent_fragment_paths)} latents in chunks of {LATENT_PROCESSING_CHUNK_SIZE} ---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
final_video_clip_paths = []
|
| 199 |
+
num_chunks = -(-len(latent_fragment_paths) // LATENT_PROCESSING_CHUNK_SIZE)
|
|
|
|
| 200 |
for i in range(num_chunks):
|
| 201 |
chunk_start_index = i * LATENT_PROCESSING_CHUNK_SIZE
|
| 202 |
chunk_end_index = chunk_start_index + LATENT_PROCESSING_CHUNK_SIZE
|
| 203 |
chunk_paths = latent_fragment_paths[chunk_start_index:chunk_end_index]
|
| 204 |
+
progress(i / num_chunks, desc=f"Processing & Decoding Batch {i+1}/{num_chunks}")
|
|
|
|
|
|
|
|
|
|
| 205 |
tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
|
| 206 |
+
tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
|
| 208 |
+
del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
|
| 209 |
+
logger.info(f"Batch {i+1} concatenated. Latent shape: {sub_group_latent.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
base_name = f"clip_{i:04d}_{run_timestamp}"
|
| 211 |
+
current_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}.mp4")
|
| 212 |
+
pixel_tensor = self.latents_to_pixels(sub_group_latent)
|
| 213 |
+
self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=FPS)
|
| 214 |
+
del pixel_tensor, sub_group_latent; gc.collect(); torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
final_video_clip_paths.append(current_clip_path)
|
| 216 |
|
| 217 |
+
progress(0.98, desc="Final assembly of clips...")
|
| 218 |
+
final_video_path = os.path.join(self.workspace_dir, f"original_movie_{run_timestamp}.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
self.concatenate_videos_ffmpeg(final_video_clip_paths, final_video_path)
|
| 220 |
+
logger.info("Cleaning up temporary clip files...")
|
|
|
|
|
|
|
| 221 |
try:
|
|
|
|
| 222 |
shutil.rmtree(temp_video_clips_dir)
|
| 223 |
+
except OSError as e:
|
| 224 |
+
logger.warning(f"Could not remove temporary clip directory: {e}")
|
| 225 |
+
logger.info(f"Process complete! Original video saved to: {final_video_path}")
|
| 226 |
+
return {"final_path": final_video_path, "latent_paths": latent_fragment_paths}
|
| 227 |
+
|
| 228 |
+
def upscale_latents_and_create_video(self, latent_paths: list, chunk_size: int, progress: gr.Progress):
|
| 229 |
+
if not latent_paths:
|
| 230 |
+
raise gr.Error("Cannot perform upscaling: no latent paths were provided.")
|
| 231 |
+
logger.info("--- STARTING POST-PRODUCTION: Latent Upscaling ---")
|
| 232 |
+
run_timestamp = int(time.time())
|
| 233 |
+
temp_upscaled_clips_dir = os.path.join(self.workspace_dir, f"temp_upscaled_clips_{run_timestamp}")
|
| 234 |
+
os.makedirs(temp_upscaled_clips_dir, exist_ok=True)
|
| 235 |
+
final_upscaled_clip_paths = []
|
| 236 |
+
num_chunks = -(-len(latent_paths) // chunk_size)
|
| 237 |
+
for i in range(num_chunks):
|
| 238 |
+
chunk_start_index = i * chunk_size
|
| 239 |
+
chunk_end_index = chunk_start_index + chunk_size
|
| 240 |
+
chunk_paths = latent_paths[chunk_start_index:chunk_end_index]
|
| 241 |
+
progress(i / num_chunks, desc=f"Upscaling & Decoding Batch {i+1}/{num_chunks}")
|
| 242 |
+
tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths]
|
| 243 |
+
tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)]
|
| 244 |
+
sub_group_latent = torch.cat(tensors_para_concatenar, dim=2)
|
| 245 |
+
del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache()
|
| 246 |
+
logger.info(f"Batch {i+1} loaded. Original latent shape: {sub_group_latent.shape}")
|
| 247 |
+
upscaled_latent_chunk = latent_enhancer_specialist_singleton.upscale(sub_group_latent)
|
| 248 |
+
del sub_group_latent; gc.collect(); torch.cuda.empty_cache()
|
| 249 |
+
logger.info(f"Batch {i+1} upscaled. New latent shape: {upscaled_latent_chunk.shape}")
|
| 250 |
+
pixel_tensor = self.latents_to_pixels(upscaled_latent_chunk)
|
| 251 |
+
del upscaled_latent_chunk; gc.collect(); torch.cuda.empty_cache()
|
| 252 |
+
base_name = f"upscaled_clip_{i:04d}_{run_timestamp}"
|
| 253 |
+
current_clip_path = os.path.join(temp_upscaled_clips_dir, f"{base_name}.mp4")
|
| 254 |
+
self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=24)
|
| 255 |
+
final_upscaled_clip_paths.append(current_clip_path)
|
| 256 |
+
del pixel_tensor; gc.collect(); torch.cuda.empty_cache()
|
| 257 |
+
logger.info(f"Saved upscaled clip: {Path(current_clip_path).name}")
|
| 258 |
+
progress(0.98, desc="Assembling upscaled clips...")
|
| 259 |
+
final_video_path = os.path.join(self.workspace_dir, f"upscaled_movie_{run_timestamp}.mp4")
|
| 260 |
+
self.concatenate_videos_ffmpeg(final_upscaled_clip_paths, final_video_path)
|
| 261 |
+
logger.info("Cleaning up temporary upscaled clip files...")
|
| 262 |
+
try:
|
| 263 |
+
shutil.rmtree(temp_upscaled_clips_dir)
|
| 264 |
concat_list_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 265 |
+
if os.path.exists(concat_list_path): os.remove(concat_list_path)
|
|
|
|
| 266 |
except OSError as e:
|
| 267 |
+
logger.warning(f"Could not remove temporary upscaled clip directory: {e}")
|
| 268 |
+
logger.info(f"Latent upscaling complete! Final video at: {final_video_path}")
|
|
|
|
| 269 |
yield {"final_path": final_video_path}
|
| 270 |
|
| 271 |
+
def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress: gr.Progress):
|
| 272 |
+
"""
|
| 273 |
+
Post-Production Step 4B: Applies SeedVR super-resolution to an existing video file.
|
| 274 |
+
"""
|
| 275 |
+
logger.info(f"--- STARTING POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---")
|
| 276 |
+
progress(0.1, desc=f"Preparing for HD Mastering with SeedVR {model_version}...")
|
| 277 |
+
|
| 278 |
+
run_timestamp = int(time.time())
|
| 279 |
+
output_path = os.path.join(self.workspace_dir, f"hd_mastered_movie_{run_timestamp}.mp4")
|
| 280 |
+
|
| 281 |
+
try:
|
| 282 |
+
final_path = hd_specialist_singleton.process_video(
|
| 283 |
+
input_video_path=source_video_path,
|
| 284 |
+
output_video_path=output_path,
|
| 285 |
+
prompt=prompt,
|
| 286 |
+
model_version=model_version,
|
| 287 |
+
steps=steps,
|
| 288 |
+
progress=progress
|
| 289 |
+
)
|
| 290 |
+
logger.info(f"HD Mastering complete! Final video at: {final_path}")
|
| 291 |
+
yield {"final_path": final_path}
|
| 292 |
+
except Exception as e:
|
| 293 |
+
logger.error(f"HD Mastering failed: {e}", exc_info=True)
|
| 294 |
+
raise gr.Error(f"HD Mastering failed. Details: {e}")
|
| 295 |
+
|
| 296 |
+
def generate_audio_for_final_video(self, source_video_path: str, audio_prompt: str, progress: gr.Progress):
|
| 297 |
+
"""
|
| 298 |
+
Post-Production Step 4C: Generates audio for a final video file and muxes it in.
|
| 299 |
+
"""
|
| 300 |
+
logger.info(f"--- STARTING POST-PRODUCTION: Audio Generation ---")
|
| 301 |
+
progress(0.1, desc="Preparing for audio generation...")
|
| 302 |
|
| 303 |
try:
|
| 304 |
+
# Get video duration using ffprobe
|
| 305 |
result = subprocess.run(
|
| 306 |
+
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path],
|
| 307 |
capture_output=True, text=True, check=True)
|
| 308 |
+
duration = float(result.stdout.strip())
|
| 309 |
+
logger.info(f"Source video duration: {duration:.2f} seconds.")
|
| 310 |
+
|
| 311 |
+
progress(0.5, desc="Generating audio track...")
|
| 312 |
+
# The audio specialist handles file naming and muxing internally
|
| 313 |
+
final_path = audio_specialist_singleton.generate_audio_for_video(
|
| 314 |
+
video_path=source_video_path,
|
| 315 |
+
prompt=audio_prompt,
|
| 316 |
+
duration_seconds=duration,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
logger.info(f"Audio generation complete! Final video with audio at: {final_path}")
|
| 320 |
+
progress(1.0, desc="Audio generation complete!")
|
| 321 |
+
yield {"final_path": final_path}
|
| 322 |
+
|
| 323 |
+
except Exception as e:
|
| 324 |
+
logger.error(f"Audio generation failed: {e}", exc_info=True)
|
| 325 |
+
raise gr.Error(f"Audio generation failed. Details: {e}")
|
| 326 |
+
|
| 327 |
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
|
| 328 |
+
"""Internal helper to call the LTX manager."""
|
| 329 |
final_ltx_params = {
|
| 330 |
**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
|
| 331 |
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
|
| 332 |
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
|
| 333 |
}
|
| 334 |
+
return self.ltx_manager.generate_latent_fragment(**final_ltx_params)
|
| 335 |
+
|
|
|
|
|
|
|
|
|
|
| 336 |
def _quantize_to_multiple(self, n, m):
|
| 337 |
+
"""Helper to round n to the nearest multiple of m."""
|
| 338 |
if m == 0: return n
|
| 339 |
quantized = int(round(n / m) * m)
|
| 340 |
return m if n > 0 and quantized == 0 else quantized
|