Carlexxx commited on
Commit
471266b
·
1 Parent(s): 39d7fa5

feat: Implement self-contained specialist managers

Browse files
aduc_framework/engineers/__init__.py CHANGED
@@ -6,12 +6,10 @@ from .deformes2D_thinker import deformes2d_thinker_singleton
6
  from .deformes3D_thinker import deformes3d_thinker_singleton
7
  from .deformes3D import deformes3d_engine_singleton
8
  from .deformes4D import Deformes4DEngine
9
- from .deformes7D import deformes7d_engine_singleton
10
 
11
  __all__ = [
12
  "deformes2d_thinker_singleton",
13
  "deformes3d_thinker_singleton",
14
  "deformes3d_engine_singleton",
15
  "Deformes4DEngine",
16
- "deformes7d_engine_singleton",
17
  ]
 
6
  from .deformes3D_thinker import deformes3d_thinker_singleton
7
  from .deformes3D import deformes3d_engine_singleton
8
  from .deformes4D import Deformes4DEngine
 
9
 
10
  __all__ = [
11
  "deformes2d_thinker_singleton",
12
  "deformes3d_thinker_singleton",
13
  "deformes3d_engine_singleton",
14
  "Deformes4DEngine",
 
15
  ]
aduc_framework/engineers/deformes7D.py DELETED
@@ -1,233 +0,0 @@
1
- # aduc_framework/engineers/deformes7D.py
2
- #
3
- # Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
4
- #
5
- # Versão 3.2.3 (Framework-Compliant com Inicialização Explícita)
6
- #
7
- # Este é o motor de geração unificado. Ele intercala a criação de keyframes (3D)
8
- # e fragmentos de vídeo (4D) em um único processo contínuo, potencialmente
9
- # economizando recursos e melhorando a coerência.
10
-
11
- import os
12
- import time
13
- import imageio
14
- import numpy as np
15
- import torch
16
- import logging
17
- from PIL import Image, ImageOps
18
- import subprocess
19
- import gc
20
- import yaml
21
- import shutil
22
- from pathlib import Path
23
- from typing import List, Tuple, Dict, Generator, Callable, Optional
24
-
25
- # --- Imports Relativos Corrigidos ---
26
- from ..types import LatentConditioningItem
27
- from ..managers.ltx_manager import ltx_manager_singleton
28
- from ..managers.latent_enhancer_manager import latent_enhancer_specialist_singleton
29
- from ..managers.vae_manager import vae_manager_singleton
30
- from .deformes2D_thinker import deformes2d_thinker_singleton
31
- from .deformes3D_thinker import deformes3d_thinker_singleton
32
- from ..managers.seedvr_manager import seedvr_manager_singleton
33
- from ..managers.mmaudio_manager import mmaudio_manager_singleton
34
- from ..tools.video_encode_tool import video_encode_tool_singleton
35
-
36
- logger = logging.getLogger(__name__)
37
-
38
- ProgressCallback = Optional[Callable[[float, str], None]]
39
-
40
- class Deformes7DEngine:
41
- """
42
- Motor unificado 3D/4D para geração contínua e intercalada de keyframes e
43
- fragmentos de vídeo.
44
- """
45
- def __init__(self):
46
- """O construtor é leve e não recebe argumentos."""
47
- self.workspace_dir: Optional[str] = None
48
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
49
- logger.info("Deformes7DEngine instanciado (não inicializado).")
50
-
51
- def initialize(self, workspace_dir: str):
52
- """Inicializa o motor unificado com as configurações necessárias."""
53
- if self.workspace_dir is not None:
54
- return # Evita reinicialização
55
- self.workspace_dir = workspace_dir
56
- os.makedirs(self.workspace_dir, exist_ok=True)
57
- logger.info(f"Deformes7D Unified Engine inicializado com workspace: {self.workspace_dir}.")
58
-
59
- def generate_full_movie_interleaved(
60
- self,
61
- generation_state: Dict[str, Any],
62
- progress_callback: ProgressCallback = None
63
- ) -> Dict[str, Any]:
64
- """
65
- Gera um filme completo de forma intercalada, lendo todos os parâmetros
66
- do estado de geração.
67
- """
68
- if not self.workspace_dir:
69
- raise RuntimeError("Deformes7DEngine não foi inicializado. Chame o método initialize() antes de usar.")
70
-
71
- logger.info("--- DEFORMES 7D: INICIANDO PIPELINE DE RENDERIZAÇÃO INTERCALADA ---")
72
-
73
- # 1. Extrai todos os parâmetros do estado
74
- pre_prod_params = generation_state.get("parametros_geracao", {}).get("pre_producao", {})
75
- prod_params = generation_state.get("parametros_geracao", {}).get("producao", {})
76
- storyboard = [ato["resumo_ato"] for ato in generation_state.get("Atos", [])]
77
- global_prompt = generation_state.get("Promt_geral", "")
78
- initial_ref_paths = [media["caminho"] for media in generation_state.get("midias_referencia", [])]
79
-
80
- video_resolution = pre_prod_params.get('resolution', 480)
81
- seconds_per_fragment = pre_prod_params.get('duration_per_fragment', 4.0)
82
-
83
- trim_percent = prod_params.get('trim_percent', 50)
84
- handler_strength = prod_params.get('handler_strength', 0.5)
85
- dest_strength = prod_params.get('destination_convergence_strength', 0.75)
86
- ltx_params = {
87
- "guidance_scale": prod_params.get('guidance_scale', 2.0),
88
- "stg_scale": prod_params.get('stg_scale', 0.025),
89
- "num_inference_steps": prod_params.get('inference_steps', 20)
90
- }
91
-
92
- # 2. Inicia o processo de geração
93
- run_timestamp = int(time.time())
94
- temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_7D_{run_timestamp}")
95
- os.makedirs(temp_video_clips_dir, exist_ok=True)
96
- FPS = 24
97
- FRAMES_PER_LATENT_CHUNK = 8
98
- resolution_tuple = (video_resolution, video_resolution)
99
- generated_keyframe_paths, generated_keyframe_latents, generated_video_fragment_paths = [], [], []
100
-
101
- if progress_callback: progress_callback(0, "Bootstrap: Processando K0...")
102
- k0_path = initial_ref_paths[0]
103
- k0_pil = Image.open(k0_path).convert("RGB")
104
- k0_processed_pil = self._preprocess_image(k0_pil, resolution_tuple)
105
- k0_pixel_tensor = self._pil_to_pixel_tensor(k0_processed_pil)
106
- k0_latent = vae_manager_singleton.encode(k0_pixel_tensor)
107
- generated_keyframe_paths.append(k0_path)
108
- generated_keyframe_latents.append(k0_latent)
109
-
110
- if progress_callback: progress_callback(0.01, "Bootstrap: Gerando K1...")
111
- prompt_k1 = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
112
- global_prompt, "Cena inicial.", storyboard[0], storyboard[1], k0_path, initial_ref_paths
113
- )
114
- k1_path, k1_latent = self._generate_next_causal_keyframe(k0_path, initial_ref_paths, prompt_k1, resolution_tuple)
115
- generated_keyframe_paths.append(k1_path)
116
- generated_keyframe_latents.append(k1_latent)
117
-
118
- story_history = ""
119
- eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
120
- num_transitions = len(storyboard) - 1
121
- base_4d_ltx_params = {"rescaling_scale": 0.15, "image_cond_noise_scale": 0.00, **ltx_params}
122
-
123
- for i in range(1, num_transitions):
124
- act_progress = i / num_transitions
125
- if progress_callback: progress_callback(act_progress, f"Ato {i+1}/{num_transitions} (Gerando Keyframe)...")
126
-
127
- logger.info(f"--> Etapa 3D: Gerando Keyframe K{i+1}")
128
- kx_path = generated_keyframe_paths[i]
129
- prompt_ky = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
130
- global_prompt, story_history, storyboard[i], storyboard[i+1], kx_path, initial_ref_paths
131
- )
132
- ky_path, ky_latent = self._generate_next_causal_keyframe(kx_path, initial_ref_paths, prompt_ky, resolution_tuple)
133
- generated_keyframe_paths.append(ky_path)
134
- generated_keyframe_latents.append(ky_latent)
135
-
136
- if progress_callback: progress_callback(act_progress + (0.5 / num_transitions), f"Ato {i+1}/{num_transitions} (Gerando Vídeo)...")
137
-
138
- logger.info(f"--> Etapa 4D: Gerando Fragmento de Vídeo V{i-1}")
139
- kb_path, kx_path, ky_path = generated_keyframe_paths[i-1], generated_keyframe_paths[i], generated_keyframe_paths[i+1]
140
- motion_prompt = deformes3d_thinker_singleton.get_enhanced_motion_prompt(
141
- global_prompt, story_history, kb_path, kx_path, ky_path,
142
- storyboard[i-1], storyboard[i], storyboard[i+1]
143
- )
144
- story_history += f"\n- Ato {i}: {motion_prompt}"
145
- total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
146
- frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
147
- latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
148
- DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
149
- DESTINATION_FRAME_TARGET = total_frames_brutos - 1
150
- conditioning_items = []
151
- if eco_latent_for_next_loop is None:
152
- conditioning_items.append(LatentConditioningItem(generated_keyframe_latents[i], 0, 1.0))
153
- else:
154
- conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
155
- conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
156
- conditioning_items.append(LatentConditioningItem(ky_latent, DESTINATION_FRAME_TARGET, dest_strength))
157
-
158
- fragment_latents_brutos, _ = ltx_manager_singleton.generate_latent_fragment(
159
- height=video_resolution, width=video_resolution,
160
- conditioning_items_data=conditioning_items, motion_prompt=motion_prompt,
161
- video_total_frames=total_frames_brutos, video_fps=FPS, **base_4d_ltx_params
162
- )
163
-
164
- last_trim = fragment_latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
165
- eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
166
- dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
167
- final_fragment_latents = fragment_latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
168
- final_fragment_latents = final_fragment_latents[:, :, 1:, :, :]
169
- pixel_tensor = vae_manager_singleton.decode(final_fragment_latents)
170
- fragment_path = os.path.join(temp_video_clips_dir, f"fragment_{i-1:04d}.mp4")
171
- self.save_video_from_tensor(pixel_tensor, fragment_path, fps=FPS)
172
- generated_video_fragment_paths.append(fragment_path)
173
- logger.info(f"Fragmento de Vídeo V{i-1} salvo em {fragment_path}")
174
-
175
- logger.info("--- Montagem Final dos Fragmentos de Vídeo ---")
176
- if progress_callback: progress_callback(0.98, "Montando o filme final...")
177
- final_video_path = os.path.join(self.workspace_dir, f"movie_7D_{run_timestamp}.mp4")
178
- video_encode_tool_singleton.concatenate_videos(generated_video_fragment_paths, final_video_path, self.workspace_dir)
179
- shutil.rmtree(temp_video_clips_dir)
180
- logger.info(f"Filme completo gerado em: {final_video_path}")
181
- return {"final_path": final_video_path, "all_keyframes": generated_keyframe_paths}
182
-
183
- def _generate_next_causal_keyframe(self, base_keyframe_path: str, all_ref_paths: list,
184
- prompt: str, resolution_tuple: tuple) -> Tuple[str, torch.Tensor]:
185
- ltx_context_paths = [base_keyframe_path] + [p for p in all_ref_paths if p != base_keyframe_path][:3]
186
- ltx_conditioning_items = []
187
- weight = 1.0
188
- for path in ltx_context_paths:
189
- img_pil = Image.open(path).convert("RGB")
190
- img_processed = self._preprocess_image(img_pil, resolution_tuple)
191
- pixel_tensor = self._pil_to_pixel_tensor(img_processed)
192
- latent_tensor = vae_manager_singleton.encode(pixel_tensor)
193
- ltx_conditioning_items.append(LatentConditioningItem(latent_tensor, 0, weight))
194
- if weight == 1.0: weight = -0.2
195
- else: weight -= 0.2
196
- ltx_base_params = {"guidance_scale": 3.0, "stg_scale": 0.1, "num_inference_steps": 25}
197
- generated_latents, _ = ltx_manager_singleton.generate_latent_fragment(
198
- height=resolution_tuple[0], width=resolution_tuple[1],
199
- conditioning_items_data=ltx_conditioning_items, motion_prompt=prompt,
200
- video_total_frames=48, video_fps=24, **ltx_base_params
201
- )
202
- final_latent = generated_latents[:, :, -1:, :, :]
203
- upscaled_latent = latent_enhancer_specialist_singleton.upscale(final_latent)
204
- pixel_tensor_out = vae_manager_singleton.decode(upscaled_latent)
205
- timestamp = int(time.time() * 1000)
206
- output_path = os.path.join(self.workspace_dir, f"keyframe_7D_{timestamp}.png")
207
- self._save_image_from_tensor(pixel_tensor_out, output_path)
208
- return output_path, final_latent
209
-
210
- def _preprocess_image(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
211
- if image.size != target_resolution:
212
- return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
213
- return image
214
-
215
- def _pil_to_pixel_tensor(self, pil_image: Image.Image) -> torch.Tensor:
216
- image_np = np.array(pil_image).astype(np.float32) / 255.0
217
- tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
218
- return (tensor * 2.0) - 1.0
219
-
220
- def _save_image_from_tensor(self, pixel_tensor: torch.Tensor, path: str):
221
- tensor_chw = pixel_tensor.squeeze(0).squeeze(1)
222
- tensor_hwc = tensor_chw.permute(1, 2, 0)
223
- tensor_hwc = (tensor_hwc.clamp(-1, 1) + 1) / 2.0
224
- image_np = (tensor_hwc.cpu().float().numpy() * 255).astype(np.uint8)
225
- Image.fromarray(image_np).save(path)
226
-
227
- def _quantize_to_multiple(self, n, m):
228
- if m == 0: return n
229
- quantized = int(round(n / m) * m)
230
- return m if n > 0 and quantized == 0 else quantized
231
-
232
- # --- Instanciação Singleton ---
233
- deformes7d_engine_singleton = Deformes7DEngine()