EU-IA commited on
Commit
494e411
·
verified ·
1 Parent(s): c5f25ff

Update deformes4D_engine.py

Browse files
Files changed (1) hide show
  1. deformes4D_engine.py +120 -263
deformes4D_engine.py CHANGED
@@ -1,282 +1,139 @@
1
- # deformes4D_engine.py
2
  # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
  #
4
- #
5
- # MODIFICATIONS FOR ADUC-SDR:
6
- # Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
7
- #
8
- # This file is part of the ADUC-SDR project. It contains the core logic for
9
- # video fragment generation, latent manipulation, and dynamic editing,
10
- # governed by the ADUC orchestrator.
11
- # This component is licensed under the GNU Affero General Public License v3.0.
12
 
13
  import os
14
  import time
15
- import imageio
16
- import numpy as np
17
- import torch
18
  import logging
19
- from PIL import Image, ImageOps
20
- from dataclasses import dataclass
21
  import gradio as gr
 
22
  import subprocess
23
- import random
24
- import gc
25
 
26
- from audio_specialist import audio_specialist_singleton
27
  from ltx_manager_helpers import ltx_manager_singleton
28
- from flux_kontext_helpers import flux_kontext_singleton
29
- from gemini_helpers import gemini_singleton
30
- from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
31
 
 
32
  logger = logging.getLogger(__name__)
33
 
34
- @dataclass
35
- class LatentConditioningItem:
36
- latent_tensor: torch.Tensor
37
- media_frame_number: int
38
- conditioning_strength: float
39
-
40
- class Deformes4DEngine:
41
- def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
42
- self.ltx_manager = ltx_manager
43
  self.workspace_dir = workspace_dir
44
- self._vae = None
45
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
46
- logger.info("Especialista Deformes4D (SDR Executor) inicializado.")
47
-
48
- @property
49
- def vae(self):
50
- if self._vae is None:
51
- self._vae = self.ltx_manager.workers[0].pipeline.vae
52
- self._vae.to(self.device); self._vae.eval()
53
- return self._vae
54
-
55
- def save_latent_tensor(self, tensor: torch.Tensor, path: str):
56
- torch.save(tensor.cpu(), path)
57
- logger.info(f"Tensor latente salvo em: {path}")
58
-
59
- def load_latent_tensor(self, path: str) -> torch.Tensor:
60
- tensor = torch.load(path, map_location=self.device)
61
- logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}")
62
- return tensor
63
-
64
- @torch.no_grad()
65
- def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
66
- tensor = tensor.to(self.device, dtype=self.vae.dtype)
67
- return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
68
-
69
- @torch.no_grad()
70
- def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
71
- latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
72
- timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
73
- return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
74
-
75
- def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
76
- if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
77
- video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
78
- video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
79
- video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
80
- with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
81
- for frame in video_np: writer.append_data(frame)
82
- logger.info(f"Vídeo salvo em: {path}")
83
-
84
- def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
85
- if image.size != target_resolution:
86
- logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.")
87
- return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
88
- return image
89
-
90
- def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
91
- image_np = np.array(pil_image).astype(np.float32) / 255.0
92
- tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
93
- tensor = (tensor * 2.0) - 1.0
94
- return self.pixels_to_latents(tensor)
95
 
96
- def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
97
- silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
98
- pixel_tensor = self.latents_to_pixels(latent_tensor)
99
- self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
100
- del pixel_tensor; gc.collect()
101
-
102
- try:
103
- result = subprocess.run(
104
- ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
105
- capture_output=True, text=True, check=True)
106
- frag_duration = float(result.stdout.strip())
107
- except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
108
- logger.warning(f"ffprobe falhou em {os.path.basename(silent_video_path)}. Calculando duração manualmente.")
109
- num_pixel_frames = latent_tensor.shape[2] * 8
110
- frag_duration = num_pixel_frames / 24.0
111
-
112
- video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
113
- video_path=silent_video_path, prompt=audio_prompt,
114
- duration_seconds=frag_duration)
115
-
116
- if os.path.exists(silent_video_path):
117
- os.remove(silent_video_path)
118
- return video_with_audio_path
119
-
120
- def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
121
- final_ltx_params = {
122
- **ltx_params,
123
- 'width': target_resolution[0], 'height': target_resolution[1],
124
- 'video_total_frames': total_frames_to_generate, 'video_fps': 24,
125
- 'current_fragment_index': int(time.time()),
126
- 'conditioning_items_data': conditioning_items
127
- }
128
- new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
129
- return new_full_latents
130
-
131
- def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
132
- if not video_paths:
133
- raise gr.Error("Nenhum fragmento de vídeo para montar.")
134
- list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
135
- with open(list_file_path, 'w', encoding='utf-8') as f:
136
- for path in video_paths:
137
- f.write(f"file '{os.path.abspath(path)}'\n")
138
- cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
139
- logger.info("Executando concatenação FFmpeg...")
140
- try:
141
- subprocess.run(cmd_list, check=True, capture_output=True, text=True)
142
- except subprocess.CalledProcessError as e:
143
- logger.error(f"Erro no FFmpeg: {e.stderr}")
144
- raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
145
- return output_path
146
-
147
- def generate_full_movie(self,
148
- keyframes: list,
149
- global_prompt: str,
150
- storyboard: list,
151
- seconds_per_fragment: float,
152
- overlap_percent: int,
153
- echo_frames: int,
154
- handler_strength: float,
155
- destination_convergence_strength: float,
156
- video_resolution: int,
157
- use_continuity_director: bool,
158
- progress: gr.Progress = gr.Progress()):
159
 
160
- base_ltx_params = {
161
- "guidance_scale": 1.0,
162
- "stg_scale": 0.0,
163
- "rescaling_scale": 0.15,
164
- "num_inference_steps": 7,
165
- }
166
-
167
- keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
168
- video_clips_paths, story_history, audio_history = [], "", "This is the beginning of the film."
169
- target_resolution_tuple = (video_resolution, video_resolution)
170
- n_trim_latents = self._quantize_to_multiple(int(seconds_per_fragment * 24 * (overlap_percent / 100.0)), 8)
171
- #echo_frames = 8
172
 
173
- previous_latents_path = None
174
- num_transitions_to_generate = len(keyframe_paths) - 1
 
 
 
 
 
 
175
 
176
- for i in range(num_transitions_to_generate):
177
- progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}")
178
-
179
- start_keyframe_path = keyframe_paths[i]
180
- destination_keyframe_path = keyframe_paths[i+1]
181
- present_scene_desc = storyboard[i]
182
-
183
- is_first_fragment = previous_latents_path is None
184
-
185
- if is_first_fragment:
186
- transition_type = "start"
187
- motion_prompt = gemini_singleton.get_initial_motion_prompt(
188
- global_prompt, start_keyframe_path, destination_keyframe_path, present_scene_desc
189
- )
190
- else:
191
- past_keyframe_path = keyframe_paths[i-1]
192
- past_scene_desc = storyboard[i-1]
193
- future_scene_desc = storyboard[i+1] if (i+1) < len(storyboard) else "A cena final."
194
- decision = gemini_singleton.get_cinematic_decision(
195
- global_prompt=global_prompt, story_history=story_history,
196
- past_keyframe_path=past_keyframe_path, present_keyframe_path=start_keyframe_path,
197
- future_keyframe_path=destination_keyframe_path, past_scene_desc=past_scene_desc,
198
- present_scene_desc=present_scene_desc, future_scene_desc=future_scene_desc
199
- )
200
- transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
201
-
202
- story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"
203
-
204
- if use_continuity_director: # Assume-se que este checkbox controla os diretores de vídeo e som
205
- if is_first_fragment:
206
- audio_prompt = gemini_singleton.get_sound_director_prompt(
207
- audio_history=audio_history,
208
- past_keyframe_path=start_keyframe_path, present_keyframe_path=start_keyframe_path,
209
- future_keyframe_path=destination_keyframe_path, present_scene_desc=present_scene_desc,
210
- motion_prompt=motion_prompt, future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
211
- )
212
- else:
213
- audio_prompt = gemini_singleton.get_sound_director_prompt(
214
- audio_history=audio_history, past_keyframe_path=keyframe_paths[i-1],
215
- present_keyframe_path=start_keyframe_path, future_keyframe_path=destination_keyframe_path,
216
- present_scene_desc=present_scene_desc, motion_prompt=motion_prompt,
217
- future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
218
- )
219
- else:
220
- audio_prompt = present_scene_desc # Fallback para o prompt da cena se o diretor de som estiver desligado
221
-
222
- audio_history = audio_prompt
223
-
224
- conditioning_items = []
225
- current_ltx_params = {**base_ltx_params, "handler_strength": handler_strength, "motion_prompt": motion_prompt}
226
- total_frames_to_generate = self._quantize_to_multiple(int(seconds_per_fragment * 24), 8) + 1
227
-
228
- if is_first_fragment:
229
- img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
230
- start_latent = self.pil_to_latent(img_start)
231
- conditioning_items.append(LatentConditioningItem(start_latent, 0, 1.0))
232
- if transition_type != "cut":
233
- img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
234
- destination_latent = self.pil_to_latent(img_dest)
235
- conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
236
- else:
237
- previous_latents = self.load_latent_tensor(previous_latents_path)
238
- handler_latent = previous_latents[:, :, -1:, :, :]
239
- trimmed_for_echo = previous_latents[:, :, :-n_trim_latents, :, :] if n_trim_latents > 0 and previous_latents.shape[2] > n_trim_latents else previous_latents
240
- echo_latents = trimmed_for_echo[:, :, -echo_frames:, :, :]
241
- handler_frame_position = n_trim_latents + echo_frames
242
-
243
-
244
- conditioning_items.append(LatentConditioningItem(echo_latents, 0, 1.0))
245
- conditioning_items.append(LatentConditioningItem(handler_latent, handler_frame_position, handler_strength))
246
- del previous_latents, handler_latent, trimmed_for_echo, echo_latents; gc.collect()
247
- if transition_type == "continuous":
248
- img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
249
- destination_latent = self.pil_to_latent(img_dest)
250
- conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
251
-
252
- new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate)
253
-
254
- base_name = f"fragment_{i}_{int(time.time())}"
255
- new_full_latents_path = os.path.join(self.workspace_dir, f"{base_name}_full.pt")
256
- self.save_latent_tensor(new_full_latents, new_full_latents_path)
257
-
258
- previous_latents_path = new_full_latents_path
259
-
260
- # LÓGICA DE CORTE REMOVIDA - Usamos o tensor completo.
261
- latents_for_video = new_full_latents
262
-
263
- video_with_audio_path = self._generate_video_and_audio_from_latents(latents_for_video, audio_prompt, base_name)
264
- video_clips_paths.append(video_with_audio_path)
265
-
266
-
267
- if transition_type == "cut":
268
- previous_latents_path = None
269
-
270
-
271
- yield {"fragment_path": video_with_audio_path}
272
-
273
- final_movie_path = os.path.join(self.workspace_dir, f"final_movie_{int(time.time())}.mp4")
274
- self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
275
 
276
- logger.info(f"Filme completo salvo em: {final_movie_path}")
277
- yield {"final_path": final_movie_path}
278
-
279
- def _quantize_to_multiple(self, n, m):
280
- if m == 0: return n
281
- quantized = int(round(n / m) * m)
282
- return m if n > 0 and quantized == 0 else quantized
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # aduc_orchestrator.py
2
  # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
  #
4
+ # Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
5
+ # sob os termos da Licença Pública Geral Affero GNU...
6
+ # AVISO DE PATENTE PENDENTE: Consulte NOTICE.md.
 
 
 
 
 
7
 
8
  import os
9
  import time
10
+ import shutil
 
 
11
  import logging
 
 
12
  import gradio as gr
13
+ from PIL import Image, ImageOps
14
  import subprocess
15
+ from pathlib import Path
16
+ import json
17
 
18
+ from deformes4D_engine import Deformes4DEngine
19
  from ltx_manager_helpers import ltx_manager_singleton
20
+ from gemini_helpers import gemini_singleton
21
+ from image_specialist import image_specialist_singleton
 
22
 
23
+ # Configuração de logging centralizada deve ser feita no app.py
24
  logger = logging.getLogger(__name__)
25
 
26
+ class AducDirector:
27
+ def __init__(self, workspace_dir):
 
 
 
 
 
 
 
28
  self.workspace_dir = workspace_dir
29
+ os.makedirs(self.workspace_dir, exist_ok=True)
30
+ self.state = {}
31
+ logger.info(f"O palco está pronto. Workspace em '{self.workspace_dir}'.")
32
+
33
+ def reset(self):
34
+ os.makedirs(self.workspace_dir, exist_ok=True)
35
+ self.state = {}
36
+ logger.info("Partitura limpa. Estado do Diretor reiniciado.")
37
+
38
+ def update_state(self, key, value):
39
+ log_value = value if not isinstance(value, (dict, list)) and not hasattr(value, 'shape') else f"Objeto complexo"
40
+ logger.info(f"Anotando na partitura: Estado '{key}' atualizado.")
41
+ self.state[key] = value
42
+
43
+ def get_state(self, key, default=None):
44
+ return self.state.get(key, default)
45
+
46
+ class AducOrchestrator:
47
+ def __init__(self, workspace_dir: str):
48
+ self.director = AducDirector(workspace_dir)
49
+ self.editor = Deformes4DEngine(ltx_manager_singleton, workspace_dir)
50
+ self.painter = image_specialist_singleton
51
+ logger.info("Maestro ADUC está no pódio. Músicos (especialistas) prontos.")
52
+
53
+ def process_image_for_story(self, image_path: str, size: int, filename: str = None) -> str:
54
+ """
55
+ Pré-processa uma imagem de referência: converte para RGB, redimensiona para um
56
+ quadrado e salva no diretório de trabalho.
57
+ """
58
+ img = Image.open(image_path).convert("RGB")
59
+ img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ if filename:
62
+ processed_path = os.path.join(self.director.workspace_dir, filename)
63
+ else:
64
+ processed_path = os.path.join(self.director.workspace_dir, f"ref_processed_{int(time.time()*1000)}.png")
65
+
66
+ img_square.save(processed_path)
67
+ logger.info(f"Imagem de referência processada e salva em: {processed_path}")
68
+ return processed_path
69
+
70
+ def task_generate_storyboard(self, prompt, num_keyframes, processed_ref_image_paths, progress):
71
+ logger.info(f"Ato 1, Cena 1: Roteiro. Instruindo o Roteirista (Gemini) a criar {num_keyframes} cenas a partir de: '{prompt}'")
72
+ progress(0.2, desc="Consultando Roteirista IA (Gemini)...")
73
+ storyboard = gemini_singleton.generate_storyboard(prompt, num_keyframes, processed_ref_image_paths)
74
+ logger.info(f"Roteirista retornou a partitura: {storyboard}")
75
+ self.director.update_state("storyboard", storyboard)
76
+ self.director.update_state("processed_ref_paths", processed_ref_image_paths)
77
+ return storyboard, processed_ref_image_paths[0], gr.update(visible=True, open=True)
78
+
79
+ def task_select_keyframes(self, storyboard, base_ref_paths, pool_ref_paths):
80
+ logger.info(f"Ato 1, Cena 2 (Alternativa): Fotografia. Instruindo o Editor (Gemini) a selecionar {len(storyboard)} keyframes de um banco de {len(pool_ref_paths)} imagens.")
81
+ selected_paths = gemini_singleton.select_keyframes_from_pool(storyboard, base_ref_paths, pool_ref_paths)
82
+ logger.info(f"Editor selecionou as seguintes cenas: {[os.path.basename(p) for p in selected_paths]}")
83
+ self.director.update_state("keyframes", selected_paths)
84
+ return selected_paths
85
+
86
+ def task_generate_keyframes(self, storyboard, initial_ref_path, global_prompt, keyframe_resolution, progress_callback_factory=None):
87
+ """
88
+ Delega a tarefa de geração de keyframes para o ImageSpecialist.
89
+ """
90
+ logger.info(f"Ato 1, Cena 2: Direção de Arte. Delegando ao Especialista de Imagem.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ general_ref_paths = self.director.get_state("processed_ref_paths", [])
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ final_keyframes = self.painter.generate_keyframes_from_storyboard(
95
+ storyboard=storyboard,
96
+ initial_ref_path=initial_ref_path,
97
+ global_prompt=global_prompt,
98
+ keyframe_resolution=int(keyframe_resolution),
99
+ general_ref_paths=general_ref_paths,
100
+ progress_callback_factory=progress_callback_factory
101
+ )
102
 
103
+ self.director.update_state("keyframes", final_keyframes)
104
+ logger.info("Maestro: Especialista de Imagem concluiu a geração dos keyframes.")
105
+ return final_keyframes
106
+
107
+ def task_produce_final_movie_with_feedback(self, keyframes, global_prompt, seconds_per_fragment,
108
+ overlap_percent, echo_frames,
109
+ handler_strength,
110
+ destination_convergence_strength,
111
+ video_resolution, use_continuity_director,
112
+ use_cinematographer, progress):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
+ logger.info("AducOrchestrator: Delegando a produção do filme completo ao Deformes4DEngine.")
115
+ storyboard = self.director.get_state("storyboard", [])
116
+
117
+ # --- CORREÇÃO AQUI ---
118
+ for update in self.editor.generate_full_movie(
119
+ keyframes=keyframes,
120
+ global_prompt=global_prompt,
121
+ storyboard=storyboard,
122
+ seconds_per_fragment=seconds_per_fragment,
123
+ overlap_percent=overlap_percent,
124
+ echo_frames=echo_frames,
125
+ handler_strength=handler_strength,
126
+ destination_convergence_strength=destination_convergence_strength,
127
+ video_resolution=video_resolution,
128
+ use_continuity_director=use_continuity_director,
129
+ progress=progress # <-- ADICIONADO o argumento 'progress'
130
+ ):
131
+ if "fragment_path" in update and update["fragment_path"]:
132
+ yield {"fragment_path": update["fragment_path"]}
133
+ elif "final_path" in update and update["final_path"]:
134
+ final_movie_path = update["final_path"]
135
+ self.director.update_state("final_video_path", final_movie_path)
136
+ yield {"final_path": final_movie_path}
137
+ break
138
+
139
+ logger.info("AducOrchestrator: Produção do filme concluída e estado do diretor atualizado.")