Update managers/seedvr_manager.py
Browse files- managers/seedvr_manager.py +43 -29
managers/seedvr_manager.py
CHANGED
|
@@ -2,13 +2,14 @@
|
|
| 2 |
#
|
| 3 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
-
# Version: 2.3.
|
| 6 |
#
|
| 7 |
-
#
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
|
| 11 |
import torch
|
|
|
|
| 12 |
import os
|
| 13 |
import gc
|
| 14 |
import logging
|
|
@@ -25,29 +26,29 @@ from tools.tensor_utils import wavelet_reconstruction
|
|
| 25 |
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
-
# ---
|
| 29 |
DEPS_DIR = Path("./deps")
|
| 30 |
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 31 |
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
| 32 |
VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml"
|
| 33 |
|
| 34 |
def setup_seedvr_dependencies():
|
| 35 |
-
"""
|
| 36 |
if not SEEDVR_REPO_DIR.exists():
|
| 37 |
-
logger.info(f"
|
| 38 |
try:
|
| 39 |
DEPS_DIR.mkdir(exist_ok=True)
|
| 40 |
subprocess.run(["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], check=True, capture_output=True, text=True)
|
| 41 |
-
logger.info("
|
| 42 |
except subprocess.CalledProcessError as e:
|
| 43 |
-
logger.error(f"
|
| 44 |
-
raise RuntimeError("
|
| 45 |
else:
|
| 46 |
-
logger.info("
|
| 47 |
|
| 48 |
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 49 |
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 50 |
-
logger.info(f"
|
| 51 |
|
| 52 |
setup_seedvr_dependencies()
|
| 53 |
|
|
@@ -61,27 +62,29 @@ from torchvision.transforms import Compose, Lambda, Normalize
|
|
| 61 |
from torchvision.io.video import read_video
|
| 62 |
from omegaconf import OmegaConf
|
| 63 |
|
|
|
|
| 64 |
def _load_file_from_url(url, model_dir='./', file_name=None):
|
| 65 |
os.makedirs(model_dir, exist_ok=True)
|
| 66 |
filename = file_name or os.path.basename(urlparse(url).path)
|
| 67 |
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
| 68 |
if not os.path.exists(cached_file):
|
| 69 |
-
logger.info(f'
|
| 70 |
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
|
| 71 |
return cached_file
|
| 72 |
|
| 73 |
class SeedVrManager:
|
| 74 |
-
"""
|
| 75 |
def __init__(self, workspace_dir="deformes_workspace"):
|
| 76 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 77 |
self.runner = None
|
| 78 |
self.workspace_dir = workspace_dir
|
| 79 |
self.is_initialized = False
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
def _download_models_and_configs(self):
|
| 83 |
-
"""
|
| 84 |
-
logger.info("
|
| 85 |
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
|
| 86 |
config_dir = SEEDVR_REPO_DIR / 'configs' / 'vae'
|
| 87 |
ckpt_dir.mkdir(exist_ok=True)
|
|
@@ -96,13 +99,19 @@ class SeedVrManager:
|
|
| 96 |
}
|
| 97 |
for key, url in pretrain_model_urls.items():
|
| 98 |
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
|
| 99 |
-
logger.info("
|
| 100 |
|
| 101 |
def _initialize_runner(self, model_version: str):
|
| 102 |
-
"""
|
| 103 |
if self.runner is not None: return
|
| 104 |
self._download_models_and_configs()
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
if model_version == '3B':
|
| 107 |
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
|
| 108 |
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
|
|
@@ -110,17 +119,17 @@ class SeedVrManager:
|
|
| 110 |
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
|
| 111 |
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
|
| 112 |
else:
|
| 113 |
-
raise ValueError(f"
|
| 114 |
|
| 115 |
try:
|
| 116 |
config = load_config(str(config_path))
|
| 117 |
except FileNotFoundError:
|
| 118 |
-
logger.warning("
|
| 119 |
config = OmegaConf.load(str(config_path))
|
| 120 |
correct_vae_config_path = SEEDVR_REPO_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml'
|
| 121 |
vae_config = OmegaConf.load(str(correct_vae_config_path))
|
| 122 |
config.vae = vae_config
|
| 123 |
-
logger.info("
|
| 124 |
|
| 125 |
self.runner = VideoDiffusionInfer(config)
|
| 126 |
OmegaConf.set_readonly(self.runner.config, False)
|
|
@@ -129,20 +138,25 @@ class SeedVrManager:
|
|
| 129 |
if hasattr(self.runner.vae, "set_memory_limit"):
|
| 130 |
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
|
| 131 |
self.is_initialized = True
|
| 132 |
-
logger.info(f"
|
| 133 |
|
| 134 |
def _unload_runner(self):
|
| 135 |
-
"""
|
| 136 |
if self.runner is not None:
|
| 137 |
del self.runner; self.runner = None
|
| 138 |
gc.collect(); torch.cuda.empty_cache()
|
| 139 |
self.is_initialized = False
|
| 140 |
-
logger.info("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
|
| 143 |
model_version: str = '3B', steps: int = 50, seed: int = 666,
|
| 144 |
progress: gr.Progress = None) -> str:
|
| 145 |
-
"""
|
| 146 |
try:
|
| 147 |
self._initialize_runner(model_version)
|
| 148 |
set_seed(seed, same_across_ranks=True)
|
|
@@ -185,10 +199,10 @@ class SeedVrManager:
|
|
| 185 |
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 186 |
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
| 187 |
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 188 |
-
logger.info(f"
|
| 189 |
return output_video_path
|
| 190 |
finally:
|
| 191 |
self._unload_runner()
|
| 192 |
|
| 193 |
-
# ---
|
| 194 |
seedvr_manager_singleton = SeedVrManager()
|
|
|
|
| 2 |
#
|
| 3 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
+
# Version: 2.3.3
|
| 6 |
#
|
| 7 |
+
# This version adds a monkey patch to disable torch.distributed.barrier calls
|
| 8 |
+
# within the SeedVR library, allowing it to run in a single-GPU inference mode
|
| 9 |
+
# without raising a "process group not initialized" error.
|
| 10 |
|
| 11 |
import torch
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
import os
|
| 14 |
import gc
|
| 15 |
import logging
|
|
|
|
| 26 |
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
+
# --- Dependency Management ---
|
| 30 |
DEPS_DIR = Path("./deps")
|
| 31 |
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 32 |
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
| 33 |
VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml"
|
| 34 |
|
| 35 |
def setup_seedvr_dependencies():
|
| 36 |
+
"""Ensures the SeedVR repository is cloned and available in the sys.path."""
|
| 37 |
if not SEEDVR_REPO_DIR.exists():
|
| 38 |
+
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
|
| 39 |
try:
|
| 40 |
DEPS_DIR.mkdir(exist_ok=True)
|
| 41 |
subprocess.run(["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], check=True, capture_output=True, text=True)
|
| 42 |
+
logger.info("SeedVR repository cloned successfully.")
|
| 43 |
except subprocess.CalledProcessError as e:
|
| 44 |
+
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
|
| 45 |
+
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
|
| 46 |
else:
|
| 47 |
+
logger.info("Found local SeedVR repository.")
|
| 48 |
|
| 49 |
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 50 |
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 51 |
+
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
|
| 52 |
|
| 53 |
setup_seedvr_dependencies()
|
| 54 |
|
|
|
|
| 62 |
from torchvision.io.video import read_video
|
| 63 |
from omegaconf import OmegaConf
|
| 64 |
|
| 65 |
+
|
| 66 |
def _load_file_from_url(url, model_dir='./', file_name=None):
|
| 67 |
os.makedirs(model_dir, exist_ok=True)
|
| 68 |
filename = file_name or os.path.basename(urlparse(url).path)
|
| 69 |
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
| 70 |
if not os.path.exists(cached_file):
|
| 71 |
+
logger.info(f'Downloading: "{url}" to {cached_file}')
|
| 72 |
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
|
| 73 |
return cached_file
|
| 74 |
|
| 75 |
class SeedVrManager:
|
| 76 |
+
"""Manages the SeedVR model for HD Mastering tasks."""
|
| 77 |
def __init__(self, workspace_dir="deformes_workspace"):
|
| 78 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 79 |
self.runner = None
|
| 80 |
self.workspace_dir = workspace_dir
|
| 81 |
self.is_initialized = False
|
| 82 |
+
self._original_barrier = None # To store the original distributed barrier function
|
| 83 |
+
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
|
| 84 |
|
| 85 |
def _download_models_and_configs(self):
|
| 86 |
+
"""Downloads the necessary checkpoints AND the missing VAE config file."""
|
| 87 |
+
logger.info("Verifying and downloading SeedVR2 models and configs...")
|
| 88 |
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
|
| 89 |
config_dir = SEEDVR_REPO_DIR / 'configs' / 'vae'
|
| 90 |
ckpt_dir.mkdir(exist_ok=True)
|
|
|
|
| 99 |
}
|
| 100 |
for key, url in pretrain_model_urls.items():
|
| 101 |
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
|
| 102 |
+
logger.info("SeedVR2 models and configs downloaded successfully.")
|
| 103 |
|
| 104 |
def _initialize_runner(self, model_version: str):
|
| 105 |
+
"""Loads and configures the SeedVR model, with patches for single-GPU inference."""
|
| 106 |
if self.runner is not None: return
|
| 107 |
self._download_models_and_configs()
|
| 108 |
+
|
| 109 |
+
if dist.is_available() and not dist.is_initialized():
|
| 110 |
+
logger.info("Applying patch to disable torch.distributed.barrier for single-GPU inference.")
|
| 111 |
+
self._original_barrier = dist.barrier
|
| 112 |
+
dist.barrier = lambda *args, **kwargs: None
|
| 113 |
+
|
| 114 |
+
logger.info(f"Initializing SeedVR2 {model_version} runner...")
|
| 115 |
if model_version == '3B':
|
| 116 |
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
|
| 117 |
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
|
|
|
|
| 119 |
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
|
| 120 |
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
|
| 121 |
else:
|
| 122 |
+
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
|
| 123 |
|
| 124 |
try:
|
| 125 |
config = load_config(str(config_path))
|
| 126 |
except FileNotFoundError:
|
| 127 |
+
logger.warning("Caught expected FileNotFoundError. Loading config manually.")
|
| 128 |
config = OmegaConf.load(str(config_path))
|
| 129 |
correct_vae_config_path = SEEDVR_REPO_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml'
|
| 130 |
vae_config = OmegaConf.load(str(correct_vae_config_path))
|
| 131 |
config.vae = vae_config
|
| 132 |
+
logger.info("Configuration loaded and patched manually.")
|
| 133 |
|
| 134 |
self.runner = VideoDiffusionInfer(config)
|
| 135 |
OmegaConf.set_readonly(self.runner.config, False)
|
|
|
|
| 138 |
if hasattr(self.runner.vae, "set_memory_limit"):
|
| 139 |
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
|
| 140 |
self.is_initialized = True
|
| 141 |
+
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
|
| 142 |
|
| 143 |
def _unload_runner(self):
|
| 144 |
+
"""Unloads the runner from VRAM and restores any applied patches."""
|
| 145 |
if self.runner is not None:
|
| 146 |
del self.runner; self.runner = None
|
| 147 |
gc.collect(); torch.cuda.empty_cache()
|
| 148 |
self.is_initialized = False
|
| 149 |
+
logger.info("SeedVR runner unloaded from VRAM.")
|
| 150 |
+
|
| 151 |
+
if self._original_barrier is not None:
|
| 152 |
+
logger.info("Restoring original torch.distributed.barrier function.")
|
| 153 |
+
dist.barrier = self._original_barrier
|
| 154 |
+
self._original_barrier = None
|
| 155 |
|
| 156 |
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
|
| 157 |
model_version: str = '3B', steps: int = 50, seed: int = 666,
|
| 158 |
progress: gr.Progress = None) -> str:
|
| 159 |
+
"""Applies HD enhancement to a video using the SeedVR logic."""
|
| 160 |
try:
|
| 161 |
self._initialize_runner(model_version)
|
| 162 |
set_seed(seed, same_across_ranks=True)
|
|
|
|
| 199 |
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 200 |
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
| 201 |
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 202 |
+
logger.info(f"HD Mastered video saved to: {output_video_path}")
|
| 203 |
return output_video_path
|
| 204 |
finally:
|
| 205 |
self._unload_runner()
|
| 206 |
|
| 207 |
+
# --- Singleton Instance ---
|
| 208 |
seedvr_manager_singleton = SeedVrManager()
|