Create deformes7D.py
Browse files- engineers/deformes7D.py +300 -0
engineers/deformes7D.py
ADDED
|
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# engineers/deformes7D.py
|
| 2 |
+
#
|
| 3 |
+
# AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR
|
| 4 |
+
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 5 |
+
#
|
| 6 |
+
# Contato:
|
| 7 |
+
# Carlos Rodrigues dos Santos
|
| 8 |
+
# carlex22@gmail.com
|
| 9 |
+
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
| 10 |
+
#
|
| 11 |
+
# Repositórios e Projetos Relacionados:
|
| 12 |
+
# GitHub: https://github.com/carlex22/Aduc-sdr
|
| 13 |
+
#
|
| 14 |
+
# This program is free software: you can redistribute it and/or modify
|
| 15 |
+
# it under the terms of the GNU Affero General Public License as published by
|
| 16 |
+
# the Free Software Foundation, either version 3 of the License, or
|
| 17 |
+
# (at your option) any later version.
|
| 18 |
+
#
|
| 19 |
+
# This program is distributed in the hope that it will be useful,
|
| 20 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 21 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 22 |
+
# GNU Affero General Public License for more details.
|
| 23 |
+
#
|
| 24 |
+
# You should have received a copy of the GNU Affero General Public License
|
| 25 |
+
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 26 |
+
#
|
| 27 |
+
# This program is free software: you can redistribute it and/or modify
|
| 28 |
+
# it under the terms of the GNU Affero General Public License...
|
| 29 |
+
# PENDING PATENT NOTICE: Please see NOTICE.md.
|
| 30 |
+
#
|
| 31 |
+
# Version: 3.0.0
|
| 32 |
+
#
|
| 33 |
+
# This file defines the Deformes7DEngine, the unified production specialist
|
| 34 |
+
# of the ADUC-SDR framework. It merges the capabilities of 3D (causal keyframing)
|
| 35 |
+
# and 4D (video fragment generation) into a single, continuous, and interleaved
|
| 36 |
+
# rendering pipeline. It is the definitive implementation of the ADUC-SDR philosophy.
|
| 37 |
+
|
| 38 |
+
import os
|
| 39 |
+
import time
|
| 40 |
+
import imageio
|
| 41 |
+
import numpy as np
|
| 42 |
+
import torch
|
| 43 |
+
import logging
|
| 44 |
+
from PIL import Image, ImageOps
|
| 45 |
+
import gradio as gr
|
| 46 |
+
import subprocess
|
| 47 |
+
import gc
|
| 48 |
+
import shutil
|
| 49 |
+
from pathlib import Path
|
| 50 |
+
from typing import List, Tuple, Generator, Dict, Any
|
| 51 |
+
|
| 52 |
+
from aduc_types import LatentConditioningItem
|
| 53 |
+
from managers.ltx_manager import ltx_manager_singleton
|
| 54 |
+
from managers.latent_enhancer_manager import latent_enhancer_specialist_singleton
|
| 55 |
+
from managers.vae_manager import vae_manager_singleton
|
| 56 |
+
from engineers.deformes2D_thinker import deformes2d_thinker_singleton
|
| 57 |
+
from managers.seedvr_manager import seedvr_manager_singleton
|
| 58 |
+
from managers.mmaudio_manager import mmaudio_manager_singleton
|
| 59 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
| 60 |
+
|
| 61 |
+
logger = logging.getLogger(__name__)
|
| 62 |
+
|
| 63 |
+
class Deformes7DEngine:
|
| 64 |
+
"""
|
| 65 |
+
Unified 3D/4D engine for continuous, interleaved generation of keyframes and video fragments.
|
| 66 |
+
"""
|
| 67 |
+
def __init__(self, workspace_dir="deformes_workspace"):
|
| 68 |
+
self.workspace_dir = workspace_dir
|
| 69 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 70 |
+
logger.info("Deformes7D Unified Engine initialized.")
|
| 71 |
+
os.makedirs(self.workspace_dir, exist_ok=True)
|
| 72 |
+
|
| 73 |
+
# --- HELPER METHODS (from 3D and 4D engines) ---
|
| 74 |
+
|
| 75 |
+
def _preprocess_image(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
| 76 |
+
"""Resizes and fits an image to the target resolution."""
|
| 77 |
+
if image.size != target_resolution:
|
| 78 |
+
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 79 |
+
return image
|
| 80 |
+
|
| 81 |
+
def _pil_to_pixel_tensor(self, pil_image: Image.Image) -> torch.Tensor:
|
| 82 |
+
"""Converts PIL to the 5D pixel tensor for VAE encoding."""
|
| 83 |
+
image_np = np.array(pil_image).astype(np.float32) / 255.0
|
| 84 |
+
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 85 |
+
return (tensor * 2.0) - 1.0
|
| 86 |
+
|
| 87 |
+
def _save_image_from_tensor(self, pixel_tensor: torch.Tensor, path: str):
|
| 88 |
+
"""Saves a 1-frame pixel tensor as a PNG image."""
|
| 89 |
+
tensor_chw = pixel_tensor.squeeze(0).squeeze(1)
|
| 90 |
+
tensor_hwc = tensor_chw.permute(1, 2, 0)
|
| 91 |
+
tensor_hwc = (tensor_hwc.clamp(-1, 1) + 1) / 2.0
|
| 92 |
+
image_np = (tensor_hwc.cpu().float().numpy() * 255).astype(np.uint8)
|
| 93 |
+
Image.fromarray(image_np).save(path)
|
| 94 |
+
|
| 95 |
+
def _quantize_to_multiple(self, n, m):
|
| 96 |
+
"""Helper to round n to the nearest multiple of m."""
|
| 97 |
+
if m == 0: return n
|
| 98 |
+
quantized = int(round(n / m) * m)
|
| 99 |
+
return m if n > 0 and quantized == 0 else quantized
|
| 100 |
+
|
| 101 |
+
# --- CORE GENERATION LOGIC ---
|
| 102 |
+
|
| 103 |
+
def _generate_next_causal_keyframe(self, base_keyframe_path: str, all_ref_paths: list,
|
| 104 |
+
prompt: str, resolution_tuple: tuple) -> Tuple[str, torch.Tensor]:
|
| 105 |
+
"""
|
| 106 |
+
Generates the next keyframe in a sequence using the LTX latent evolution method.
|
| 107 |
+
Returns the path to the saved PNG and its corresponding latent tensor.
|
| 108 |
+
"""
|
| 109 |
+
ltx_context_paths = [base_keyframe_path] + [p for p in all_ref_paths if p != base_keyframe_path][:3]
|
| 110 |
+
|
| 111 |
+
ltx_conditioning_items = []
|
| 112 |
+
weight = 1.0
|
| 113 |
+
for path in ltx_context_paths:
|
| 114 |
+
img_pil = Image.open(path).convert("RGB")
|
| 115 |
+
img_processed = self._preprocess_image(img_pil, resolution_tuple)
|
| 116 |
+
pixel_tensor = self._pil_to_pixel_tensor(img_processed)
|
| 117 |
+
latent_tensor = vae_manager_singleton.encode(pixel_tensor)
|
| 118 |
+
ltx_conditioning_items.append(LatentConditioningItem(latent_tensor, 0, weight))
|
| 119 |
+
if weight == 1.0: weight = -0.2
|
| 120 |
+
else: weight -= 0.2
|
| 121 |
+
|
| 122 |
+
ltx_base_params = {"guidance_scale": 3.0, "stg_scale": 0.1, "num_inference_steps": 25}
|
| 123 |
+
generated_latents, _ = ltx_manager_singleton.generate_latent_fragment(
|
| 124 |
+
height=resolution_tuple[0], width=resolution_tuple[1],
|
| 125 |
+
conditioning_items_data=ltx_conditioning_items, motion_prompt=prompt,
|
| 126 |
+
video_total_frames=48, video_fps=24, **ltx_base_params
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
final_latent = generated_latents[:, :, -1:, :, :]
|
| 130 |
+
upscaled_latent = latent_enhancer_specialist_singleton.upscale(final_latent)
|
| 131 |
+
pixel_tensor_out = vae_manager_singleton.decode(upscaled_latent)
|
| 132 |
+
|
| 133 |
+
# Save the new keyframe image
|
| 134 |
+
timestamp = int(time.time() * 1000)
|
| 135 |
+
output_path = os.path.join(self.workspace_dir, f"keyframe_{timestamp}.png")
|
| 136 |
+
self._save_image_from_tensor(pixel_tensor_out, output_path)
|
| 137 |
+
|
| 138 |
+
return output_path, final_latent
|
| 139 |
+
|
| 140 |
+
def generate_full_movie_interleaved(self, initial_ref_paths: list, storyboard: list, global_prompt: str,
|
| 141 |
+
video_resolution: int, seconds_per_fragment: float, trim_percent: int,
|
| 142 |
+
handler_strength: float, dest_strength: float, ltx_params: dict,
|
| 143 |
+
progress=gr.Progress()):
|
| 144 |
+
"""
|
| 145 |
+
The main interleaved rendering pipeline for Deformes7D.
|
| 146 |
+
"""
|
| 147 |
+
# --- INITIALIZATION ---
|
| 148 |
+
logger.info("--- DEFORMES 7D: INITIATING INTERLEAVED RENDERING PIPELINE ---")
|
| 149 |
+
run_timestamp = int(time.time())
|
| 150 |
+
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
|
| 151 |
+
os.makedirs(temp_video_clips_dir, exist_ok=True)
|
| 152 |
+
|
| 153 |
+
resolution_tuple = (video_resolution, video_resolution)
|
| 154 |
+
|
| 155 |
+
# Lists to store the full sequence of generated artifacts
|
| 156 |
+
generated_keyframe_paths = []
|
| 157 |
+
generated_keyframe_latents = []
|
| 158 |
+
generated_video_fragment_paths = []
|
| 159 |
+
|
| 160 |
+
# --- BOOTSTRAP: Generate first two keyframes to start the pipeline ---
|
| 161 |
+
progress(0, desc="Bootstrap: Generating K0...")
|
| 162 |
+
# Keyframe 0 is just the processed initial reference
|
| 163 |
+
k0_path = initial_ref_paths[0]
|
| 164 |
+
k0_pil = Image.open(k0_path).convert("RGB")
|
| 165 |
+
k0_processed_pil = self._preprocess_image(k0_pil, resolution_tuple)
|
| 166 |
+
k0_pixel_tensor = self._pil_to_pixel_tensor(k0_processed_pil)
|
| 167 |
+
k0_latent = vae_manager_singleton.encode(k0_pixel_tensor)
|
| 168 |
+
generated_keyframe_paths.append(k0_path)
|
| 169 |
+
generated_keyframe_latents.append(k0_latent)
|
| 170 |
+
|
| 171 |
+
progress(0, desc="Bootstrap: Generating K1...")
|
| 172 |
+
# Generate Keyframe 1 from Keyframe 0
|
| 173 |
+
prompt_k1 = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 174 |
+
global_prompt, "Initial scene.", storyboard[0], storyboard[1], k0_path, initial_ref_paths
|
| 175 |
+
)
|
| 176 |
+
k1_path, k1_latent = self._generate_next_causal_keyframe(k0_path, initial_ref_paths, prompt_k1, resolution_tuple)
|
| 177 |
+
generated_keyframe_paths.append(k1_path)
|
| 178 |
+
generated_keyframe_latents.append(k1_latent)
|
| 179 |
+
|
| 180 |
+
# --- MAIN RENDERING LOOP ---
|
| 181 |
+
story_history = ""
|
| 182 |
+
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 183 |
+
num_transitions = len(storyboard) - 1
|
| 184 |
+
|
| 185 |
+
for i in range(1, num_transitions):
|
| 186 |
+
progress(i / num_transitions, desc=f"Processing Act {i+1}/{num_transitions}...")
|
| 187 |
+
|
| 188 |
+
# --- 1. Generate the NEXT Keyframe (Look-ahead) ---
|
| 189 |
+
logger.info(f"--> Step 3D: Generating Keyframe K{i+1}")
|
| 190 |
+
kx_path = generated_keyframe_paths[i]
|
| 191 |
+
prompt_ky = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 192 |
+
global_prompt, "Continuing sequence...", storyboard[i], storyboard[i+1], kx_path, initial_ref_paths
|
| 193 |
+
)
|
| 194 |
+
ky_path, ky_latent = self._generate_next_causal_keyframe(kx_path, initial_ref_paths, prompt_ky, resolution_tuple)
|
| 195 |
+
generated_keyframe_paths.append(ky_path)
|
| 196 |
+
generated_keyframe_latents.append(ky_latent)
|
| 197 |
+
|
| 198 |
+
# --- 2. Generate the CURRENT Video Fragment ---
|
| 199 |
+
logger.info(f"--> Step 4D: Generating Video Fragment V{i}")
|
| 200 |
+
kb_path = generated_keyframe_paths[i-1] # Past
|
| 201 |
+
kx_path = generated_keyframe_paths[i] # Present (Start)
|
| 202 |
+
ky_path = generated_keyframe_paths[i+1] # Future (End)
|
| 203 |
+
|
| 204 |
+
decision = deformes2d_thinker_singleton.get_cinematic_decision(
|
| 205 |
+
global_prompt, story_history, kb_path, kx_path, ky_path,
|
| 206 |
+
storyboard[i-1], storyboard[i], storyboard[i+1]
|
| 207 |
+
)
|
| 208 |
+
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 209 |
+
story_history += f"\n- Act {i}: {motion_prompt}"
|
| 210 |
+
|
| 211 |
+
# Prepare conditioning items for the video fragment
|
| 212 |
+
conditioning_items = []
|
| 213 |
+
if eco_latent_for_next_loop is None:
|
| 214 |
+
conditioning_items.append(LatentConditioningItem(generated_keyframe_latents[i], 0, 1.0))
|
| 215 |
+
else:
|
| 216 |
+
# This part reuses the logic from the old Deformes4D
|
| 217 |
+
# ... [Implementation of Eco/Deja-Vu conditioning here] ...
|
| 218 |
+
# For simplicity in this first draft, we'll use the direct keyframe latent
|
| 219 |
+
conditioning_items.append(LatentConditioningItem(generated_keyframe_latents[i], 0, 1.0))
|
| 220 |
+
|
| 221 |
+
# Add the destination anchor
|
| 222 |
+
conditioning_items.append(LatentConditioningItem(ky_latent, -1, dest_strength)) # Use -1 for last frame
|
| 223 |
+
|
| 224 |
+
fragment_latents, _ = ltx_manager_singleton.generate_latent_fragment(
|
| 225 |
+
height=video_resolution, width=video_resolution,
|
| 226 |
+
conditioning_items_data=conditioning_items, motion_prompt=motion_prompt,
|
| 227 |
+
video_total_frames=self._quantize_to_multiple(int(seconds_per_fragment * 24), 8),
|
| 228 |
+
video_fps=24, **ltx_params
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Post-process and save the video fragment
|
| 232 |
+
pixel_tensor = vae_manager_singleton.decode(fragment_latents)
|
| 233 |
+
fragment_path = os.path.join(temp_video_clips_dir, f"fragment_{i}.mp4")
|
| 234 |
+
self.save_video_from_tensor(pixel_tensor, fragment_path, fps=24)
|
| 235 |
+
generated_video_fragment_paths.append(fragment_path)
|
| 236 |
+
logger.info(f"Video Fragment V{i} saved to {fragment_path}")
|
| 237 |
+
|
| 238 |
+
# Here you would also extract the Eco and Deja-Vu from `fragment_latents` for the next loop
|
| 239 |
+
# ...
|
| 240 |
+
|
| 241 |
+
# --- FINAL ASSEMBLY ---
|
| 242 |
+
logger.info("--- Final Assembly of Video Fragments ---")
|
| 243 |
+
final_video_path = os.path.join(self.workspace_dir, f"movie_7D_{run_timestamp}.mp4")
|
| 244 |
+
video_encode_tool_singleton.concatenate_videos(
|
| 245 |
+
video_paths=generated_video_fragment_paths,
|
| 246 |
+
output_path=final_video_path,
|
| 247 |
+
workspace_dir=self.workspace_dir
|
| 248 |
+
)
|
| 249 |
+
shutil.rmtree(temp_video_clips_dir)
|
| 250 |
+
|
| 251 |
+
logger.info(f"Full movie generated at: {final_video_path}")
|
| 252 |
+
# This function would then return the path and other artifacts for post-production
|
| 253 |
+
return {"final_path": final_video_path, "all_keyframes": generated_keyframe_paths}
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# --- POST-PRODUCTION METHODS (migrated from Deformes4D) ---
|
| 257 |
+
|
| 258 |
+
def upscale_video(self, source_video_path: str, progress=gr.Progress()):
|
| 259 |
+
# This would be a more complex function that loads the video in chunks,
|
| 260 |
+
# encodes to latents, upscales, decodes, and reassembles.
|
| 261 |
+
# For this example, we assume it's a placeholder.
|
| 262 |
+
logger.info(f"Placeholder for upscaling video: {source_video_path}")
|
| 263 |
+
return source_video_path
|
| 264 |
+
|
| 265 |
+
def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress=gr.Progress()):
|
| 266 |
+
logger.info(f"--- POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---")
|
| 267 |
+
progress(0.1, desc=f"Preparing for HD Mastering...")
|
| 268 |
+
run_timestamp = int(time.time())
|
| 269 |
+
output_path = os.path.join(self.workspace_dir, f"{Path(source_video_path).stem}_hd.mp4")
|
| 270 |
+
try:
|
| 271 |
+
final_path = seedvr_manager_singleton.process_video(
|
| 272 |
+
input_video_path=source_video_path, output_video_path=output_path,
|
| 273 |
+
prompt=prompt, model_version=model_version, steps=steps, progress=progress
|
| 274 |
+
)
|
| 275 |
+
logger.info(f"HD Mastering complete! Final video at: {final_path}")
|
| 276 |
+
yield {"final_path": final_path}
|
| 277 |
+
except Exception as e:
|
| 278 |
+
logger.error(f"HD Mastering failed: {e}", exc_info=True)
|
| 279 |
+
raise gr.Error(f"HD Mastering failed. Details: {e}")
|
| 280 |
+
|
| 281 |
+
def generate_audio(self, source_video_path: str, audio_prompt: str, progress=gr.Progress()):
|
| 282 |
+
logger.info(f"--- POST-PRODUCTION: Audio Generation ---")
|
| 283 |
+
progress(0.1, desc="Preparing for audio generation...")
|
| 284 |
+
run_timestamp = int(time.time())
|
| 285 |
+
output_path = os.path.join(self.workspace_dir, f"{Path(source_video_path).stem}_audio.mp4")
|
| 286 |
+
try:
|
| 287 |
+
result = subprocess.run(
|
| 288 |
+
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path],
|
| 289 |
+
capture_output=True, text=True, check=True)
|
| 290 |
+
duration = float(result.stdout.strip())
|
| 291 |
+
progress(0.5, desc="Generating audio track...")
|
| 292 |
+
final_path = mmaudio_manager_singleton.generate_audio_for_video(
|
| 293 |
+
video_path=source_video_path, prompt=audio_prompt,
|
| 294 |
+
duration_seconds=duration, output_path_override=output_path
|
| 295 |
+
)
|
| 296 |
+
logger.info(f"Audio generation complete! Final video with audio at: {final_path}")
|
| 297 |
+
yield {"final_path": final_path}
|
| 298 |
+
except Exception as e:
|
| 299 |
+
logger.error(f"Audio generation failed: {e}", exc_info=True)
|
| 300 |
+
raise gr.Error(f"Audio generation failed. Details: {e}")
|