Carlexxx
commited on
Commit
·
9c3367c
1
Parent(s):
8cc88ac
feat(arch): Launch the 'Staged Rocket' - Modular Deformes Engine Architecture
Browse files- aduc_orchestrator.py +6 -6
- app.py +37 -11
- deformes4D_engine.py +124 -196
- gemini_helpers.py +1 -1
- prompts/cinematic_director_prompt.txt +2 -7
aduc_orchestrator.py
CHANGED
|
@@ -104,9 +104,9 @@ class AducOrchestrator:
|
|
| 104 |
logger.info("Maestro: Especialista de Imagem concluiu a geração dos keyframes.")
|
| 105 |
return final_keyframes
|
| 106 |
|
| 107 |
-
# --- ASSINATURA DA FUNÇÃO
|
| 108 |
def task_produce_final_movie_with_feedback(self, keyframes, global_prompt, seconds_per_fragment,
|
| 109 |
-
|
| 110 |
handler_strength,
|
| 111 |
destination_convergence_strength,
|
| 112 |
video_resolution, use_continuity_director,
|
|
@@ -115,14 +115,14 @@ class AducOrchestrator:
|
|
| 115 |
logger.info("AducOrchestrator: Delegando a produção do filme completo ao Deformes4DEngine.")
|
| 116 |
storyboard = self.director.get_state("storyboard", [])
|
| 117 |
|
| 118 |
-
# --- CHAMADA
|
| 119 |
for update in self.editor.generate_full_movie(
|
| 120 |
keyframes=keyframes,
|
| 121 |
global_prompt=global_prompt,
|
| 122 |
-
storyboard=storyboard,
|
| 123 |
seconds_per_fragment=seconds_per_fragment,
|
| 124 |
-
|
| 125 |
-
|
| 126 |
handler_strength=handler_strength,
|
| 127 |
destination_convergence_strength=destination_convergence_strength,
|
| 128 |
video_resolution=video_resolution,
|
|
|
|
| 104 |
logger.info("Maestro: Especialista de Imagem concluiu a geração dos keyframes.")
|
| 105 |
return final_keyframes
|
| 106 |
|
| 107 |
+
# --- ASSINATURA DA FUNÇÃO ATUALIZADA ---
|
| 108 |
def task_produce_final_movie_with_feedback(self, keyframes, global_prompt, seconds_per_fragment,
|
| 109 |
+
trim_chunks: int, echo_chunks: int, # <-- PARÂMETROS ATUALIZADOS
|
| 110 |
handler_strength,
|
| 111 |
destination_convergence_strength,
|
| 112 |
video_resolution, use_continuity_director,
|
|
|
|
| 115 |
logger.info("AducOrchestrator: Delegando a produção do filme completo ao Deformes4DEngine.")
|
| 116 |
storyboard = self.director.get_state("storyboard", [])
|
| 117 |
|
| 118 |
+
# --- CHAMADA DA FUNÇÃO ATUALIZADA ---
|
| 119 |
for update in self.editor.generate_full_movie(
|
| 120 |
keyframes=keyframes,
|
| 121 |
global_prompt=global_prompt,
|
| 122 |
+
storyboard=storyboard,
|
| 123 |
seconds_per_fragment=seconds_per_fragment,
|
| 124 |
+
trim_chunks=trim_chunks, # <-- PARÂMETRO NOVO
|
| 125 |
+
echo_chunks=echo_chunks, # <-- PARÂMETRO NOVO
|
| 126 |
handler_strength=handler_strength,
|
| 127 |
destination_convergence_strength=destination_convergence_strength,
|
| 128 |
video_resolution=video_resolution,
|
app.py
CHANGED
|
@@ -116,7 +116,9 @@ def run_mode_b_wrapper(prompt, num_keyframes, ref_files, progress=gr.Progress())
|
|
| 116 |
|
| 117 |
return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True)
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
handler_strength, destination_convergence_strength,
|
| 121 |
video_resolution, use_cont, use_cine,
|
| 122 |
progress=gr.Progress()):
|
|
@@ -130,8 +132,10 @@ def run_video_production_wrapper(keyframes, prompt, duration, overlap_percent, e
|
|
| 130 |
video_fragments_so_far = []
|
| 131 |
final_movie_path = None
|
| 132 |
|
|
|
|
| 133 |
for update in aduc.task_produce_final_movie_with_feedback(
|
| 134 |
-
keyframes, prompt, duration,
|
|
|
|
| 135 |
handler_strength, destination_convergence_strength,
|
| 136 |
resolution, use_cont, use_cine, progress
|
| 137 |
):
|
|
@@ -155,8 +159,15 @@ def get_log_content():
|
|
| 155 |
except FileNotFoundError:
|
| 156 |
return "Arquivo de log ainda não criado. Inicie uma geração."
|
| 157 |
|
|
|
|
| 158 |
def update_ui_language(lang_code):
|
| 159 |
lang_map = i18n.get(lang_code, i18n.get('en', {}))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
return {
|
| 161 |
title_md: gr.update(value=f"# {lang_map.get('app_title')}"),
|
| 162 |
subtitle_md: gr.update(value=lang_map.get('app_subtitle')),
|
|
@@ -175,8 +186,10 @@ def update_ui_language(lang_code):
|
|
| 175 |
continuity_director_checkbox: gr.update(label=lang_map.get('continuity_director_label')),
|
| 176 |
cinematographer_checkbox: gr.update(label=lang_map.get('cinematographer_label')),
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
| 180 |
forca_guia_slider: gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')),
|
| 181 |
convergencia_destino_slider: gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')),
|
| 182 |
|
|
@@ -218,12 +231,18 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 218 |
continuity_director_checkbox = gr.Checkbox(label=default_lang.get('continuity_director_label'), value=True)
|
| 219 |
cinematographer_checkbox = gr.Checkbox(label=default_lang.get('cinematographer_label'), value=True, visible=False)
|
| 220 |
|
| 221 |
-
|
|
|
|
| 222 |
with gr.Row():
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
gr.Markdown("**Controle de Influência
|
| 227 |
with gr.Row():
|
| 228 |
forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info'))
|
| 229 |
convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info'))
|
|
@@ -238,7 +257,13 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 238 |
update_log_button = gr.Button("Atualizar Log")
|
| 239 |
|
| 240 |
# --- 5. CONEXÕES DA UI ---
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
lang_selector.change(fn=update_ui_language, inputs=lang_selector, outputs=all_ui_components)
|
| 243 |
|
| 244 |
ref_image_input.upload(fn=preprocess_base_images_wrapper, inputs=ref_image_input, outputs=ref_image_input)
|
|
@@ -255,12 +280,13 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 255 |
outputs=[storyboard_output, keyframe_gallery, step3_accordion]
|
| 256 |
)
|
| 257 |
|
|
|
|
| 258 |
produce_button.click(
|
| 259 |
fn=run_video_production_wrapper,
|
| 260 |
inputs=[
|
| 261 |
keyframe_gallery, prompt_input, duration_per_fragment_slider,
|
| 262 |
-
|
| 263 |
-
|
| 264 |
forca_guia_slider,
|
| 265 |
convergencia_destino_slider,
|
| 266 |
resolution_selector, continuity_director_checkbox, cinematographer_checkbox
|
|
|
|
| 116 |
|
| 117 |
return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True)
|
| 118 |
|
| 119 |
+
# --- ASSINATURA DA FUNÇÃO WRAPPER ATUALIZADA ---
|
| 120 |
+
def run_video_production_wrapper(keyframes, prompt, duration,
|
| 121 |
+
trim_chunks, echo_chunks, # <-- PARÂMETROS ATUALIZADOS
|
| 122 |
handler_strength, destination_convergence_strength,
|
| 123 |
video_resolution, use_cont, use_cine,
|
| 124 |
progress=gr.Progress()):
|
|
|
|
| 132 |
video_fragments_so_far = []
|
| 133 |
final_movie_path = None
|
| 134 |
|
| 135 |
+
# --- CHAMADA PARA O ORQUESTRADOR ATUALIZADA ---
|
| 136 |
for update in aduc.task_produce_final_movie_with_feedback(
|
| 137 |
+
keyframes, prompt, duration,
|
| 138 |
+
int(trim_chunks), int(echo_chunks), # <-- Passando os novos valores (convertidos para int)
|
| 139 |
handler_strength, destination_convergence_strength,
|
| 140 |
resolution, use_cont, use_cine, progress
|
| 141 |
):
|
|
|
|
| 159 |
except FileNotFoundError:
|
| 160 |
return "Arquivo de log ainda não criado. Inicie uma geração."
|
| 161 |
|
| 162 |
+
# --- FUNÇÃO DE TRADUÇÃO ATUALIZADA (NOVOS COMPONENTES) ---
|
| 163 |
def update_ui_language(lang_code):
|
| 164 |
lang_map = i18n.get(lang_code, i18n.get('en', {}))
|
| 165 |
+
# Adicionando traduções para os novos sliders (supondo que existam no i18n.json)
|
| 166 |
+
trim_chunks_label = lang_map.get('trim_chunks_label', 'Trim Chunks')
|
| 167 |
+
trim_chunks_info = lang_map.get('trim_chunks_info', 'How many chunks (8 frames each) to "trim" from the end before extracting the continuity guide (Echo).')
|
| 168 |
+
echo_chunks_label = lang_map.get('echo_chunks_label', 'Echo Chunks (Memory)')
|
| 169 |
+
echo_chunks_info = lang_map.get('echo_chunks_info', 'The size of the continuity guide (Echo) in chunks. This is the "memory" passed to the next scene.')
|
| 170 |
+
|
| 171 |
return {
|
| 172 |
title_md: gr.update(value=f"# {lang_map.get('app_title')}"),
|
| 173 |
subtitle_md: gr.update(value=lang_map.get('app_subtitle')),
|
|
|
|
| 186 |
continuity_director_checkbox: gr.update(label=lang_map.get('continuity_director_label')),
|
| 187 |
cinematographer_checkbox: gr.update(label=lang_map.get('cinematographer_label')),
|
| 188 |
|
| 189 |
+
# --- ATUALIZANDO OS NOVOS SLIDERS ---
|
| 190 |
+
trim_chunks_slider: gr.update(label=trim_chunks_label, info=trim_chunks_info),
|
| 191 |
+
echo_chunks_slider: gr.update(label=echo_chunks_label, info=echo_chunks_info),
|
| 192 |
+
|
| 193 |
forca_guia_slider: gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')),
|
| 194 |
convergencia_destino_slider: gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')),
|
| 195 |
|
|
|
|
| 231 |
continuity_director_checkbox = gr.Checkbox(label=default_lang.get('continuity_director_label'), value=True)
|
| 232 |
cinematographer_checkbox = gr.Checkbox(label=default_lang.get('cinematographer_label'), value=True, visible=False)
|
| 233 |
|
| 234 |
+
# --- INÍCIO DA ATUALIZAÇÃO DA UI (CONTROLES DE CHUNK) ---
|
| 235 |
+
gr.Markdown("--- \n**Controles de Continuidade e Edição (Baseado em Chunks):**")
|
| 236 |
with gr.Row():
|
| 237 |
+
trim_chunks_slider = gr.Slider(minimum=0, maximum=10, value=2, step=1,
|
| 238 |
+
label="Chunks de Corte",
|
| 239 |
+
info="Quantos chunks (de 8 frames) 'aparar' do final antes de extrair a guia de continuidade (Eco).")
|
| 240 |
+
echo_chunks_slider = gr.Slider(minimum=1, maximum=3, value=1, step=1,
|
| 241 |
+
label="Chunks de Eco (Memória)",
|
| 242 |
+
info="O tamanho da guia de continuidade (Eco) em chunks. Esta é a 'memória' que passa para a próxima cena.")
|
| 243 |
+
# --- FIM DA ATUALIZAÇÃO DA UI ---
|
| 244 |
|
| 245 |
+
gr.Markdown("**Controle de Influência:**")
|
| 246 |
with gr.Row():
|
| 247 |
forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info'))
|
| 248 |
convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info'))
|
|
|
|
| 257 |
update_log_button = gr.Button("Atualizar Log")
|
| 258 |
|
| 259 |
# --- 5. CONEXÕES DA UI ---
|
| 260 |
+
# Removendo os componentes antigos e adicionando os novos para a tradução
|
| 261 |
+
all_ui_components_dict = update_ui_language('pt')
|
| 262 |
+
# Adicionando os novos componentes manualmente ao dicionário para garantir que sejam incluídos
|
| 263 |
+
all_ui_components_dict[trim_chunks_slider] = None
|
| 264 |
+
all_ui_components_dict[echo_chunks_slider] = None
|
| 265 |
+
all_ui_components = list(all_ui_components_dict.keys())
|
| 266 |
+
|
| 267 |
lang_selector.change(fn=update_ui_language, inputs=lang_selector, outputs=all_ui_components)
|
| 268 |
|
| 269 |
ref_image_input.upload(fn=preprocess_base_images_wrapper, inputs=ref_image_input, outputs=ref_image_input)
|
|
|
|
| 280 |
outputs=[storyboard_output, keyframe_gallery, step3_accordion]
|
| 281 |
)
|
| 282 |
|
| 283 |
+
# --- CHAMADA DO BOTÃO ATUALIZADA ---
|
| 284 |
produce_button.click(
|
| 285 |
fn=run_video_production_wrapper,
|
| 286 |
inputs=[
|
| 287 |
keyframe_gallery, prompt_input, duration_per_fragment_slider,
|
| 288 |
+
trim_chunks_slider, # <-- NOVO INPUT
|
| 289 |
+
echo_chunks_slider, # <-- NOVO INPUT
|
| 290 |
forca_guia_slider,
|
| 291 |
convergencia_destino_slider,
|
| 292 |
resolution_selector, continuity_director_checkbox, cinematographer_checkbox
|
deformes4D_engine.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
# deformes4D_engine.py
|
| 2 |
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 3 |
#
|
| 4 |
-
#
|
| 5 |
# MODIFICATIONS FOR ADUC-SDR:
|
| 6 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
|
| 7 |
#
|
|
@@ -23,9 +22,7 @@ import subprocess
|
|
| 23 |
import random
|
| 24 |
import gc
|
| 25 |
|
| 26 |
-
from audio_specialist import audio_specialist_singleton
|
| 27 |
from ltx_manager_helpers import ltx_manager_singleton
|
| 28 |
-
from flux_kontext_helpers import flux_kontext_singleton
|
| 29 |
from gemini_helpers import gemini_singleton
|
| 30 |
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 31 |
|
|
@@ -52,7 +49,6 @@ class Deformes4DEngine:
|
|
| 52 |
self._vae.to(self.device); self._vae.eval()
|
| 53 |
return self._vae
|
| 54 |
|
| 55 |
-
# ... (métodos auxiliares como save/load/pixels_to_latents permanecem iguais) ...
|
| 56 |
def save_latent_tensor(self, tensor: torch.Tensor, path: str):
|
| 57 |
torch.save(tensor.cpu(), path)
|
| 58 |
logger.info(f"Tensor latente salvo em: {path}")
|
|
@@ -74,17 +70,19 @@ class Deformes4DEngine:
|
|
| 74 |
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
|
| 75 |
|
| 76 |
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
|
| 77 |
-
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0:
|
|
|
|
|
|
|
| 78 |
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
|
| 79 |
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
|
| 80 |
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
|
| 81 |
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
|
| 82 |
for frame in video_np: writer.append_data(frame)
|
| 83 |
-
logger.info(f"
|
| 84 |
|
| 85 |
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
| 86 |
if image.size != target_resolution:
|
| 87 |
-
logger.info(f" -
|
| 88 |
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 89 |
return image
|
| 90 |
|
|
@@ -94,245 +92,175 @@ class Deformes4DEngine:
|
|
| 94 |
tensor = (tensor * 2.0) - 1.0
|
| 95 |
return self.pixels_to_latents(tensor)
|
| 96 |
|
| 97 |
-
def
|
| 98 |
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
|
| 99 |
pixel_tensor = self.latents_to_pixels(latent_tensor)
|
| 100 |
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
|
| 101 |
del pixel_tensor; gc.collect()
|
| 102 |
-
|
| 103 |
-
#try:
|
| 104 |
-
# result = subprocess.run(
|
| 105 |
-
# ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
|
| 106 |
-
# capture_output=True, text=True, check=True)
|
| 107 |
-
# frag_duration = float(result.stdout.strip())
|
| 108 |
-
#except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
|
| 109 |
-
# logger.warning(f"ffprobe falhou em {os.path.basename(silent_video_path)}. Calculando duração manualmente.")
|
| 110 |
-
# num_pixel_frames = latent_tensor.shape[2] * 8
|
| 111 |
-
# frag_duration = num_pixel_frames / 24.0
|
| 112 |
-
#
|
| 113 |
-
#video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
|
| 114 |
-
# video_path=silent_video_path, prompt=audio_prompt,
|
| 115 |
-
# duration_seconds=frag_duration)
|
| 116 |
-
#
|
| 117 |
-
#if os.path.exists(silent_video_path):
|
| 118 |
-
# os.remove(silent_video_path)
|
| 119 |
return silent_video_path
|
| 120 |
|
| 121 |
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
|
| 122 |
-
final_ltx_params = {
|
| 123 |
-
**ltx_params,
|
| 124 |
-
'width': target_resolution[0], 'height': target_resolution[1],
|
| 125 |
-
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
|
| 126 |
-
'current_fragment_index': int(time.time()),
|
| 127 |
-
'conditioning_items_data': conditioning_items
|
| 128 |
-
}
|
| 129 |
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
|
| 130 |
return new_full_latents
|
| 131 |
|
| 132 |
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
|
| 133 |
-
if not video_paths:
|
| 134 |
-
raise gr.Error("Nenhum fragmento de vÃdeo para montar.")
|
| 135 |
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 136 |
with open(list_file_path, 'w', encoding='utf-8') as f:
|
| 137 |
-
for path in video_paths:
|
| 138 |
-
f.write(f"file '{os.path.abspath(path)}'\n")
|
| 139 |
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 140 |
-
logger.info("Executando
|
| 141 |
try:
|
| 142 |
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 143 |
except subprocess.CalledProcessError as e:
|
| 144 |
logger.error(f"Erro no FFmpeg: {e.stderr}")
|
| 145 |
-
raise gr.Error(f"Falha na montagem final do
|
| 146 |
return output_path
|
| 147 |
|
| 148 |
-
def generate_full_movie(self,
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
seconds_per_fragment: float,
|
| 153 |
-
overlap_percent: int,
|
| 154 |
-
echo_frames: int,
|
| 155 |
-
handler_strength: float,
|
| 156 |
-
destination_convergence_strength: float,
|
| 157 |
-
video_resolution: int,
|
| 158 |
-
use_continuity_director: bool,
|
| 159 |
-
progress: gr.Progress = gr.Progress()):
|
| 160 |
|
| 161 |
-
base_ltx_params = {
|
| 162 |
-
"guidance_scale": 1.0, "stg_scale": 0.0,
|
| 163 |
-
"rescaling_scale": 0.15, "num_inference_steps": 7,
|
| 164 |
-
}
|
| 165 |
-
|
| 166 |
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
|
| 167 |
-
video_clips_paths, story_history
|
| 168 |
target_resolution_tuple = (video_resolution, video_resolution)
|
| 169 |
-
n_trim_latents = self._quantize_to_multiple(int(seconds_per_fragment * 24 * (overlap_percent / 100.0)), 8)
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
num_transitions_to_generate = len(keyframe_paths) -
|
|
|
|
| 176 |
|
| 177 |
for i in range(num_transitions_to_generate):
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
-
is_first_fragment = (prepared_handler_latent is None)
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
global_prompt=global_prompt, story_history=story_history,
|
| 198 |
-
past_keyframe_path=past_keyframe_path, present_keyframe_path=start_keyframe_path,
|
| 199 |
-
future_keyframe_path=destination_keyframe_path, past_scene_desc=past_scene_desc,
|
| 200 |
-
present_scene_desc=present_scene_desc, future_scene_desc=future_scene_desc
|
| 201 |
-
)
|
| 202 |
-
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 203 |
|
| 204 |
story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"
|
| 205 |
|
| 206 |
-
|
| 207 |
-
if is_first_fragment:
|
| 208 |
-
audio_prompt = gemini_singleton.get_sound_director_prompt(
|
| 209 |
-
audio_history=audio_history,
|
| 210 |
-
past_keyframe_path=start_keyframe_path, present_keyframe_path=start_keyframe_path,
|
| 211 |
-
future_keyframe_path=destination_keyframe_path, present_scene_desc=present_scene_desc,
|
| 212 |
-
motion_prompt=motion_prompt, future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
|
| 213 |
-
)
|
| 214 |
-
else:
|
| 215 |
-
audio_prompt = gemini_singleton.get_sound_director_prompt(
|
| 216 |
-
audio_history=audio_history, past_keyframe_path=keyframe_paths[i-1],
|
| 217 |
-
present_keyframe_path=start_keyframe_path, future_keyframe_path=destination_keyframe_path,
|
| 218 |
-
present_scene_desc=present_scene_desc, motion_prompt=motion_prompt,
|
| 219 |
-
future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
|
| 220 |
-
)
|
| 221 |
-
else:
|
| 222 |
-
audio_prompt = present_scene_desc
|
| 223 |
|
| 224 |
-
audio_history = audio_prompt
|
| 225 |
-
|
| 226 |
conditioning_items = []
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
else:
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
destination_latent = self.pil_to_latent(img_dest)
|
| 248 |
-
conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
|
| 249 |
|
| 250 |
-
|
|
|
|
| 251 |
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
|
| 254 |
-
# --- CÓDIGO ADICIONADO PARA ITERAR E CONTAR FRAMES ---
|
| 255 |
-
logger.info("Iniciando a contagem de frames para cada tensor latente individual.")
|
| 256 |
-
total_frames_from_latents = 0
|
| 257 |
-
for i in range(new_full_latents.shape[2]):
|
| 258 |
-
single_latent_tensor = new_full_latents[:, :, i:i+1, :, :]
|
| 259 |
-
temp_video_path = os.path.join(self.workspace_dir, f"temp_latent_video_{i}.mp4")
|
| 260 |
-
|
| 261 |
-
# Gerar um vídeo temporário para o tensor latente individual
|
| 262 |
-
pixel_tensor_single = self.latents_to_pixels(single_latent_tensor)
|
| 263 |
-
self.save_video_from_tensor(pixel_tensor_single, temp_video_path, fps=24)
|
| 264 |
-
del pixel_tensor_single
|
| 265 |
-
gc.collect()
|
| 266 |
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
| 268 |
try:
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
if os.path.exists(temp_video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
os.remove(temp_video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
-
logger.info(f"
|
| 283 |
-
|
| 284 |
-
# Gerar e contar frames para o vídeo completo a partir do tensor latente inteiro
|
| 285 |
-
full_latent_video_path = os.path.join(self.workspace_dir, "temp_full_latent_video.mp4")
|
| 286 |
-
full_pixel_tensor = self.latents_to_pixels(new_full_latents)
|
| 287 |
-
self.save_video_from_tensor(full_pixel_tensor, full_latent_video_path, fps=24)
|
| 288 |
-
del full_pixel_tensor
|
| 289 |
-
gc.collect()
|
| 290 |
-
|
| 291 |
-
try:
|
| 292 |
-
full_frame_count_result = subprocess.run(
|
| 293 |
-
["ffprobe", "-v", "error", "-select_streams", "v:0", "-count_frames", "-show_entries", "stream=nb_read_frames", "-of", "default=noprint_wrappers=1:nokey=1", full_latent_video_path],
|
| 294 |
-
capture_output=True, text=True, check=True
|
| 295 |
-
)
|
| 296 |
-
total_frames_full_video = int(full_frame_count_result.stdout.strip())
|
| 297 |
-
logger.info(f"Vídeo completo gerado a partir do tensor latente inteiro possui {total_frames_full_video} frames.")
|
| 298 |
-
except (subprocess.CalledProcessError, ValueError, FileNotFoundError) as e:
|
| 299 |
-
logger.error(f"Falha ao contar frames do vídeo completo com ffprobe: {e}")
|
| 300 |
-
finally:
|
| 301 |
-
if os.path.exists(full_latent_video_path):
|
| 302 |
-
os.remove(full_latent_video_path)
|
| 303 |
-
# --- FIM DO CÓDIGO ADICIONADO ---```
|
| 304 |
-
|
| 305 |
-
|
| 306 |
|
| 307 |
-
# --- NOVA LÓGICA: Preparação movida para o final do loop ---
|
| 308 |
-
is_last_fragment = (i == num_transitions_to_generate - 1)
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
prepared_handler_latent = new_full_latents[:, :, -1:, :, :].clone()
|
| 313 |
-
prepared_echo_latent = new_full_latents[:, :, -echo_frames:, :, :].clone()
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
base_name = f"fragment_{i}_{int(time.time())}"
|
| 325 |
-
video_with_audio_path = self._generate_video_and_audio_from_latents(latents_for_video, audio_prompt, base_name)
|
| 326 |
-
video_clips_paths.append(video_with_audio_path)
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
final_movie_path = os.path.join(self.workspace_dir, f"final_movie_{int(time.time())}.mp4")
|
| 336 |
self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
|
| 337 |
|
| 338 |
logger.info(f"Filme completo salvo em: {final_movie_path}")
|
|
|
|
| 1 |
# deformes4D_engine.py
|
| 2 |
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 3 |
#
|
|
|
|
| 4 |
# MODIFICATIONS FOR ADUC-SDR:
|
| 5 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
|
| 6 |
#
|
|
|
|
| 22 |
import random
|
| 23 |
import gc
|
| 24 |
|
|
|
|
| 25 |
from ltx_manager_helpers import ltx_manager_singleton
|
|
|
|
| 26 |
from gemini_helpers import gemini_singleton
|
| 27 |
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 28 |
|
|
|
|
| 49 |
self._vae.to(self.device); self._vae.eval()
|
| 50 |
return self._vae
|
| 51 |
|
|
|
|
| 52 |
def save_latent_tensor(self, tensor: torch.Tensor, path: str):
|
| 53 |
torch.save(tensor.cpu(), path)
|
| 54 |
logger.info(f"Tensor latente salvo em: {path}")
|
|
|
|
| 70 |
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
|
| 71 |
|
| 72 |
def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
|
| 73 |
+
if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0:
|
| 74 |
+
logger.warning("Tentativa de salvar um tensor de vídeo inválido. Abortando.")
|
| 75 |
+
return
|
| 76 |
video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
|
| 77 |
video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
|
| 78 |
video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
|
| 79 |
with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
|
| 80 |
for frame in video_np: writer.append_data(frame)
|
| 81 |
+
logger.info(f"Vídeo salvo em: {path}")
|
| 82 |
|
| 83 |
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
| 84 |
if image.size != target_resolution:
|
| 85 |
+
logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.")
|
| 86 |
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 87 |
return image
|
| 88 |
|
|
|
|
| 92 |
tensor = (tensor * 2.0) - 1.0
|
| 93 |
return self.pixels_to_latents(tensor)
|
| 94 |
|
| 95 |
+
def _generate_video_from_latents(self, latent_tensor, base_name):
|
| 96 |
silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
|
| 97 |
pixel_tensor = self.latents_to_pixels(latent_tensor)
|
| 98 |
self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
|
| 99 |
del pixel_tensor; gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
return silent_video_path
|
| 101 |
|
| 102 |
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
|
| 103 |
+
final_ltx_params = {**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], 'video_total_frames': total_frames_to_generate, 'video_fps': 24, 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
|
| 105 |
return new_full_latents
|
| 106 |
|
| 107 |
def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
|
| 108 |
+
if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
|
|
|
|
| 109 |
list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
|
| 110 |
with open(list_file_path, 'w', encoding='utf-8') as f:
|
| 111 |
+
for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
|
|
|
|
| 112 |
cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
|
| 113 |
+
logger.info("Executando concatenação FFmpeg...")
|
| 114 |
try:
|
| 115 |
subprocess.run(cmd_list, check=True, capture_output=True, text=True)
|
| 116 |
except subprocess.CalledProcessError as e:
|
| 117 |
logger.error(f"Erro no FFmpeg: {e.stderr}")
|
| 118 |
+
raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
|
| 119 |
return output_path
|
| 120 |
|
| 121 |
+
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list, seconds_per_fragment: float,
|
| 122 |
+
trim_chunks: int, echo_chunks: int,
|
| 123 |
+
handler_strength: float, destination_convergence_strength: float, video_resolution: int,
|
| 124 |
+
use_continuity_director: bool, progress: gr.Progress = gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
base_ltx_params = {"guidance_scale": 1.0, "stg_scale": 0.0, "rescaling_scale": 0.15, "num_inference_steps": 20}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
|
| 128 |
+
video_clips_paths, story_history = [], ""
|
| 129 |
target_resolution_tuple = (video_resolution, video_resolution)
|
|
|
|
| 130 |
|
| 131 |
+
total_frames_base = self._quantize_to_multiple(round(seconds_per_fragment * 24), 8)
|
| 132 |
+
if total_frames_base == 0: total_frames_base = 8
|
| 133 |
+
|
| 134 |
+
logger.info("="*50)
|
| 135 |
+
logger.info("CÁLCULOS DE GERAÇÃO E GUIAS (BASEADO EM CHUNKS):")
|
| 136 |
+
logger.info(f" - Duração Base Solicitada: {total_frames_base} frames ({total_frames_base // 8} chunks)")
|
| 137 |
+
logger.info(f" - N_Corte para guias: {trim_chunks} chunks")
|
| 138 |
+
logger.info(f" - N_Eco (Dejavu) para guias: {echo_chunks} chunks")
|
| 139 |
+
logger.info("="*50)
|
| 140 |
+
|
| 141 |
+
dejavu_latent, evo_latent, last_eco_chunk = None, None, None
|
| 142 |
+
|
| 143 |
+
if len(keyframe_paths) < 3:
|
| 144 |
+
raise gr.Error(f"O modelo de geração requer no mínimo 3 keyframes (Passado, Presente, Futuro). Você forneceu {len(keyframe_paths)}.")
|
| 145 |
|
| 146 |
+
num_transitions_to_generate = len(keyframe_paths) - 2
|
| 147 |
+
logger.info(f"Modelo 'K-2' ativado: {len(keyframe_paths)} keyframes resultarão em {num_transitions_to_generate} fragmentos de vídeo.")
|
| 148 |
|
| 149 |
for i in range(num_transitions_to_generate):
|
| 150 |
+
start_keyframe_index = i + 1
|
| 151 |
+
|
| 152 |
+
logger.info(f"--- INICIANDO FRAGMENTO {i+1}/{num_transitions_to_generate} (índice de loop i={i}) ---")
|
| 153 |
+
progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}")
|
| 154 |
+
|
| 155 |
+
past_keyframe_path = keyframe_paths[start_keyframe_index - 1]
|
| 156 |
+
start_keyframe_path = keyframe_paths[start_keyframe_index]
|
| 157 |
+
destination_keyframe_path = keyframe_paths[start_keyframe_index + 1]
|
| 158 |
+
future_story_prompt = storyboard[start_keyframe_index + 1] if (start_keyframe_index + 1) < len(storyboard) else "A cena final."
|
| 159 |
|
|
|
|
| 160 |
|
| 161 |
+
decision = gemini_singleton.get_cinematic_decision(
|
| 162 |
+
global_prompt,
|
| 163 |
+
story_history,
|
| 164 |
+
past_keyframe_path,
|
| 165 |
+
start_keyframe_path,
|
| 166 |
+
destination_keyframe_path,
|
| 167 |
+
storyboard[start_keyframe_index - 1], # Story para o Keyframe Passado
|
| 168 |
+
storyboard[start_keyframe_index], # Story para o Keyframe de Início (Presente)
|
| 169 |
+
future_story_prompt
|
| 170 |
+
)
|
| 171 |
+
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"
|
| 174 |
|
| 175 |
+
total_frames_to_generate = total_frames_base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
|
|
|
|
|
|
| 177 |
conditioning_items = []
|
| 178 |
+
logger.info(f" [0. PREPARAÇÃO] Montando itens de condicionamento para K{start_keyframe_index} -> K{start_keyframe_index+1}.")
|
| 179 |
+
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
if last_eco_chunk is None:
|
| 182 |
+
# Nenhum eco → sempre trata como "primeiro fragmento"
|
| 183 |
+
img_start = self._preprocess_image_for_latent_conversion(
|
| 184 |
+
Image.open(start_keyframe_path).convert("RGB"),
|
| 185 |
+
target_resolution_tuple
|
| 186 |
+
)
|
| 187 |
+
conditioning_items.append(
|
| 188 |
+
LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0)
|
| 189 |
+
)
|
| 190 |
else:
|
| 191 |
+
# Usa eco + handler do fragmeto anterior
|
| 192 |
+
conditioning_items.append(LatentConditioningItem(last_eco_chunk, 0, 1.0))
|
| 193 |
+
handler_frame = (echo_chunks + trim_chunks) * 8
|
| 194 |
+
conditioning_items.append(LatentConditioningItem(handler_Chunk, handler_frame, handler_strength))
|
| 195 |
+
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
|
| 198 |
+
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), total_frames_base, destination_convergence_strength))
|
| 199 |
|
| 200 |
+
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
|
| 201 |
+
new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate)
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
# --- [INÍCIO] Bloco de Verificação de Frames por Chunk ---
|
| 205 |
+
logger.info("--- [VERIFICAÇÃO DE CHUNKS INDIVIDUAIS] ---")
|
| 206 |
+
total_chunks_verificados = new_full_latents.shape[2]
|
| 207 |
+
for chunk_idx in range(total_chunks_verificados):
|
| 208 |
try:
|
| 209 |
+
# Isola o chunk atual
|
| 210 |
+
single_chunk_latent = new_full_latents[:, :, chunk_idx:chunk_idx+1, :, :]
|
| 211 |
+
|
| 212 |
+
# Gera um nome de arquivo temporário para o vídeo do chunk
|
| 213 |
+
temp_video_base_name = f"debug_chunk_{chunk_idx}"
|
| 214 |
+
|
| 215 |
+
# Converte o latente do chunk em um vídeo MP4
|
| 216 |
+
temp_video_path = self._generate_video_from_latents(single_chunk_latent, temp_video_base_name)
|
| 217 |
+
|
| 218 |
+
# Conta os frames no vídeo gerado
|
| 219 |
if os.path.exists(temp_video_path):
|
| 220 |
+
with imageio.get_reader(temp_video_path) as reader:
|
| 221 |
+
frame_count = reader.count_frames()
|
| 222 |
+
logger.info(f" - VERIFICADO: Chunk {chunk_idx} gerou um vídeo com {frame_count} frames.")
|
| 223 |
+
# Apaga o vídeo de debug
|
| 224 |
os.remove(temp_video_path)
|
| 225 |
+
else:
|
| 226 |
+
logger.warning(f" - FALHA: Não foi possível gerar o vídeo para o Chunk {chunk_idx}.")
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
logger.error(f" - ERRO ao verificar Chunk {chunk_idx}: {e}")
|
| 230 |
+
logger.info("--- [FIM DA VERIFICAÇÃO] ---")
|
| 231 |
+
# --- [FIM] Bloco de Verificação ---
|
| 232 |
|
| 233 |
+
logger.info(f" [1. GERAÇÃO] Tensor latente bruto gerado com shape: {new_full_latents.shape}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
total_chunks = new_full_latents.shape[2]
|
| 237 |
+
logger.info(f" [GUIAS] Extraindo guias de continuidade para a PRÓXIMA iteração (Total: {total_chunks} chunks).")
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
handler_Chunk = new_full_latents[:, :, -1:, :, :].clone()
|
| 240 |
+
logger.info(f" - 'handler_Chunk' (guia de evolução) extraído do chunk final (índice {total_chunks-1}).")
|
| 241 |
+
|
| 242 |
+
index_of_last_usable_chunk = total_chunks
|
| 243 |
+
end_chunk_index = index_of_last_usable_chunk - trim_chunks
|
| 244 |
+
start_chunk_index = end_chunk_index - echo_chunks
|
| 245 |
+
|
| 246 |
+
logger.info(f" - Fatia de chunks para 'Dejavu' (guia de memória) será: [{start_chunk_index}:{end_chunk_index}].")
|
| 247 |
+
last_eco_chunk = new_full_latents[:, :, start_chunk_index:end_chunk_index, :, :].clone()
|
| 248 |
+
|
| 249 |
+
logger.info(f" [2. EDIÇÃO] Realizando a montagem do clipe de vídeo a partir do tensor bruto.")
|
| 250 |
+
latents_for_video = new_full_latents
|
| 251 |
|
| 252 |
+
latents_for_video = latents_for_video[:, :, :1, :, :]
|
| 253 |
+
|
| 254 |
+
latents_for_video = latents_for_video[:, :, echo_chunks:-(trim_chunks), :, :]
|
| 255 |
+
|
| 256 |
base_name = f"fragment_{i}_{int(time.time())}"
|
|
|
|
|
|
|
| 257 |
|
| 258 |
+
logger.info(f" [3. DECODIFICAÇÃO] Tensor final para o clipe tem {latents_for_video.shape[2]} chunks. Enviando para gerar vídeo.")
|
| 259 |
+
video_path = self._generate_video_from_latents(latents_for_video, base_name)
|
| 260 |
+
video_clips_paths.append(video_path)
|
| 261 |
+
yield {"fragment_path": video_path}
|
| 262 |
+
|
| 263 |
+
final_movie_path = os.path.join(self.workspace_dir, f"final_movie_silent_{int(time.time())}.mp4")
|
|
|
|
|
|
|
| 264 |
self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
|
| 265 |
|
| 266 |
logger.info(f"Filme completo salvo em: {final_movie_path}")
|
gemini_helpers.py
CHANGED
|
@@ -47,7 +47,7 @@ class GeminiSingleton:
|
|
| 47 |
if self.api_key:
|
| 48 |
genai.configure(api_key=self.api_key)
|
| 49 |
# Modelo mais recente e capaz para tarefas complexas de visão e raciocínio.
|
| 50 |
-
self.model = genai.GenerativeModel('gemini-2.
|
| 51 |
logger.info("Especialista Gemini (1.5 Pro) inicializado com sucesso.")
|
| 52 |
else:
|
| 53 |
self.model = None
|
|
|
|
| 47 |
if self.api_key:
|
| 48 |
genai.configure(api_key=self.api_key)
|
| 49 |
# Modelo mais recente e capaz para tarefas complexas de visão e raciocínio.
|
| 50 |
+
self.model = genai.GenerativeModel('gemini-2.0-flash')
|
| 51 |
logger.info("Especialista Gemini (1.5 Pro) inicializado com sucesso.")
|
| 52 |
else:
|
| 53 |
self.model = None
|
prompts/cinematic_director_prompt.txt
CHANGED
|
@@ -24,12 +24,7 @@ You will receive a complete picture of the narrative timeline.
|
|
| 24 |
- Textual Future (Ato_n+1): "{future_scene_desc}"
|
| 25 |
- Visual Future (Keyframe k_n+1): [FUTURE_IMAGE]
|
| 26 |
|
| 27 |
-
# --- TASK
|
| 28 |
-
Analyze the transition from the PRESENT (`k_n`) to the FUTURE (`k_n+1`).
|
| 29 |
-
- If there is a major, non-continuous jump (e.g., scene changes from day to night, character teleports, location is completely different), you MUST decide this is a "cut". This is a critical break in the action.
|
| 30 |
-
- Otherwise, if the action can flow logically from the present to the future, decide it is "continuous".
|
| 31 |
-
|
| 32 |
-
# --- TASK 2: THE CINEMATIC MOTION PROMPT ---
|
| 33 |
Based on your decision, write the `motion_prompt`. The prompt MUST describe the action that moves the story from the PRESENT visual (`k_n`) towards the FUTURE visual (`k_n+1`).
|
| 34 |
|
| 35 |
**CRITICAL PROMPT DIRECTIVES:**
|
|
@@ -42,4 +37,4 @@ Based on your decision, write the `motion_prompt`. The prompt MUST describe the
|
|
| 42 |
d. **Scenery/Environment:** Describe environmental details that add to the motion and mood (e.g., "wind rustling the leaves", "rain streaks down the window").
|
| 43 |
|
| 44 |
# RESPONSE FORMAT:
|
| 45 |
-
You MUST respond with a single, clean JSON object with two keys: "transition_type" and "motion_prompt".
|
|
|
|
| 24 |
- Textual Future (Ato_n+1): "{future_scene_desc}"
|
| 25 |
- Visual Future (Keyframe k_n+1): [FUTURE_IMAGE]
|
| 26 |
|
| 27 |
+
# --- TASK : THE CINEMATIC MOTION PROMPT ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
Based on your decision, write the `motion_prompt`. The prompt MUST describe the action that moves the story from the PRESENT visual (`k_n`) towards the FUTURE visual (`k_n+1`).
|
| 29 |
|
| 30 |
**CRITICAL PROMPT DIRECTIVES:**
|
|
|
|
| 37 |
d. **Scenery/Environment:** Describe environmental details that add to the motion and mood (e.g., "wind rustling the leaves", "rain streaks down the window").
|
| 38 |
|
| 39 |
# RESPONSE FORMAT:
|
| 40 |
+
You MUST respond with a single, clean JSON object with two keys: "transition_type" = "continuous , and "motion_prompt".
|