Rename managers/hd_specialist.py to managers/seedvr_manager.py
Browse files
managers/{hd_specialist.py → seedvr_manager.py}
RENAMED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
-
# managers/
|
| 2 |
#
|
| 3 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
-
# Version: 2.
|
| 6 |
#
|
| 7 |
-
# This file implements the
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
# if they are not found locally. This removes the need for manual file copying
|
| 11 |
-
# and makes the ADUC-SDR framework more robust and portable.
|
| 12 |
|
| 13 |
import torch
|
| 14 |
import os
|
|
@@ -23,6 +21,9 @@ import gradio as gr
|
|
| 23 |
import mediapy
|
| 24 |
from einops import rearrange
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
# --- Dependency Management ---
|
|
@@ -30,6 +31,47 @@ DEPS_DIR = Path("./deps")
|
|
| 30 |
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 31 |
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def _load_file_from_url(url, model_dir='./', file_name=None):
|
| 34 |
"""Helper function to download files from a URL to a local directory."""
|
| 35 |
os.makedirs(model_dir, exist_ok=True)
|
|
@@ -40,67 +82,16 @@ def _load_file_from_url(url, model_dir='./', file_name=None):
|
|
| 40 |
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
|
| 41 |
return cached_file
|
| 42 |
|
| 43 |
-
class
|
| 44 |
"""
|
| 45 |
-
|
| 46 |
-
Manages model loading, inference, and memory on demand.
|
| 47 |
"""
|
| 48 |
def __init__(self, workspace_dir="deformes_workspace"):
|
| 49 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 50 |
self.runner = None
|
| 51 |
self.workspace_dir = workspace_dir
|
| 52 |
self.is_initialized = False
|
| 53 |
-
|
| 54 |
-
self._setup_dependencies()
|
| 55 |
-
logger.info("HD Specialist (SeedVR) initialized. Dependencies checked. Model will be loaded on demand.")
|
| 56 |
-
|
| 57 |
-
def _setup_dependencies(self):
|
| 58 |
-
"""
|
| 59 |
-
Checks for the SeedVR repository locally. If not found, clones it.
|
| 60 |
-
Then, it adds the repository to the Python path to make its modules importable.
|
| 61 |
-
"""
|
| 62 |
-
if not SEEDVR_REPO_DIR.exists():
|
| 63 |
-
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
|
| 64 |
-
try:
|
| 65 |
-
DEPS_DIR.mkdir(exist_ok=True)
|
| 66 |
-
subprocess.run(
|
| 67 |
-
["git", "clone", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
|
| 68 |
-
check=True, capture_output=True, text=True
|
| 69 |
-
)
|
| 70 |
-
logger.info("SeedVR repository cloned successfully.")
|
| 71 |
-
except subprocess.CalledProcessError as e:
|
| 72 |
-
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
|
| 73 |
-
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
|
| 74 |
-
else:
|
| 75 |
-
logger.info("Found local SeedVR repository.")
|
| 76 |
-
|
| 77 |
-
# Add the cloned repo to Python's path to allow direct imports
|
| 78 |
-
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 79 |
-
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 80 |
-
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
|
| 81 |
-
|
| 82 |
-
def _lazy_load_seedvr_modules(self):
|
| 83 |
-
"""
|
| 84 |
-
Dynamically imports SeedVR modules only when needed.
|
| 85 |
-
This prevents ImportError if the class is instantiated before dependencies are ready.
|
| 86 |
-
"""
|
| 87 |
-
if self._seedvr_modules_loaded:
|
| 88 |
-
return
|
| 89 |
-
|
| 90 |
-
global VideoDiffusionInfer, load_config, set_seed, DivisibleCrop, NaResize, Rearrange, wavelet_reconstruction, Compose, Lambda, Normalize, read_video, OmegaConf
|
| 91 |
-
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
|
| 92 |
-
from common.config import load_config
|
| 93 |
-
from common.seed import set_seed
|
| 94 |
-
from data.image.transforms.divisible_crop import DivisibleCrop
|
| 95 |
-
from data.image.transforms.na_resize import NaResize
|
| 96 |
-
from data.video.transforms.rearrange import Rearrange
|
| 97 |
-
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
|
| 98 |
-
from torchvision.transforms import Compose, Lambda, Normalize
|
| 99 |
-
from torchvision.io.video import read_video
|
| 100 |
-
from omegaconf import OmegaConf
|
| 101 |
-
|
| 102 |
-
self._seedvr_modules_loaded = True
|
| 103 |
-
logger.info("SeedVR modules have been dynamically loaded.")
|
| 104 |
|
| 105 |
def _download_models(self):
|
| 106 |
"""Downloads the necessary checkpoints for SeedVR2."""
|
|
@@ -123,10 +114,8 @@ class HDSpecialist:
|
|
| 123 |
|
| 124 |
def _initialize_runner(self, model_version: str):
|
| 125 |
"""Loads and configures the SeedVR model on demand based on the selected version."""
|
| 126 |
-
if self.runner is not None:
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
self._lazy_load_seedvr_modules()
|
| 130 |
self._download_models()
|
| 131 |
|
| 132 |
logger.info(f"Initializing SeedVR2 {model_version} runner...")
|
|
@@ -156,10 +145,8 @@ class HDSpecialist:
|
|
| 156 |
def _unload_runner(self):
|
| 157 |
"""Removes the runner from VRAM to free resources."""
|
| 158 |
if self.runner is not None:
|
| 159 |
-
del self.runner
|
| 160 |
-
|
| 161 |
-
gc.collect()
|
| 162 |
-
torch.cuda.empty_cache()
|
| 163 |
self.is_initialized = False
|
| 164 |
logger.info("SeedVR2 runner unloaded from VRAM.")
|
| 165 |
|
|
@@ -204,12 +191,7 @@ class HDSpecialist:
|
|
| 204 |
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
|
| 205 |
|
| 206 |
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
|
| 207 |
-
video_tensors = self.runner.inference(
|
| 208 |
-
noises=noises,
|
| 209 |
-
conditions=conditions,
|
| 210 |
-
dit_offload=True,
|
| 211 |
-
**text_embeds_dict,
|
| 212 |
-
)
|
| 213 |
|
| 214 |
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 215 |
|
|
@@ -223,10 +205,10 @@ class HDSpecialist:
|
|
| 223 |
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
|
| 224 |
|
| 225 |
final_sample = wavelet_reconstruction(
|
| 226 |
-
rearrange(final_sample, "c t h w -> t c h w"),
|
| 227 |
rearrange(input_video_sample, "c t h w -> t c h w")
|
| 228 |
)
|
| 229 |
-
|
| 230 |
final_sample = rearrange(final_sample, "t c h w -> t h w c")
|
| 231 |
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 232 |
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
|
@@ -234,9 +216,8 @@ class HDSpecialist:
|
|
| 234 |
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 235 |
logger.info(f"HD Mastered video saved to: {output_video_path}")
|
| 236 |
return output_video_path
|
| 237 |
-
|
| 238 |
finally:
|
| 239 |
self._unload_runner()
|
| 240 |
|
| 241 |
-
# Singleton
|
| 242 |
-
|
|
|
|
| 1 |
+
# managers/seedvr_manager.py
|
| 2 |
#
|
| 3 |
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
+
# Version: 2.3.0
|
| 6 |
#
|
| 7 |
+
# This file implements the SeedVrManager, which uses the SeedVR model for
|
| 8 |
+
# video super-resolution. It is self-contained, automatically cloning its own
|
| 9 |
+
# dependencies from the official SeedVR repository.
|
|
|
|
|
|
|
| 10 |
|
| 11 |
import torch
|
| 12 |
import os
|
|
|
|
| 21 |
import mediapy
|
| 22 |
from einops import rearrange
|
| 23 |
|
| 24 |
+
# Internalized utility for color correction, ensuring stability.
|
| 25 |
+
from tools.tensor_utils import wavelet_reconstruction
|
| 26 |
+
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
# --- Dependency Management ---
|
|
|
|
| 31 |
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 32 |
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
| 33 |
|
| 34 |
+
def setup_seedvr_dependencies():
|
| 35 |
+
"""
|
| 36 |
+
Ensures the SeedVR repository is cloned and available in the sys.path.
|
| 37 |
+
This function is run once when the module is first imported.
|
| 38 |
+
"""
|
| 39 |
+
if not SEEDVR_REPO_DIR.exists():
|
| 40 |
+
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
|
| 41 |
+
try:
|
| 42 |
+
DEPS_DIR.mkdir(exist_ok=True)
|
| 43 |
+
# Use --depth 1 for a shallow clone to save space and time
|
| 44 |
+
subprocess.run(
|
| 45 |
+
["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
|
| 46 |
+
check=True, capture_output=True, text=True
|
| 47 |
+
)
|
| 48 |
+
logger.info("SeedVR repository cloned successfully.")
|
| 49 |
+
except subprocess.CalledProcessError as e:
|
| 50 |
+
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
|
| 51 |
+
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
|
| 52 |
+
else:
|
| 53 |
+
logger.info("Found local SeedVR repository.")
|
| 54 |
+
|
| 55 |
+
# Add the cloned repo to Python's path to allow direct imports
|
| 56 |
+
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 57 |
+
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 58 |
+
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
|
| 59 |
+
|
| 60 |
+
# --- Execute dependency setup immediately upon module import ---
|
| 61 |
+
setup_seedvr_dependencies()
|
| 62 |
+
|
| 63 |
+
# --- Now that the path is set, we can safely import from the cloned repo ---
|
| 64 |
+
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
|
| 65 |
+
from common.config import load_config
|
| 66 |
+
from common.seed import set_seed
|
| 67 |
+
from data.image.transforms.divisible_crop import DivisibleCrop
|
| 68 |
+
from data.image.transforms.na_resize import NaResize
|
| 69 |
+
from data.video.transforms.rearrange import Rearrange
|
| 70 |
+
from torchvision.transforms import Compose, Lambda, Normalize
|
| 71 |
+
from torchvision.io.video import read_video
|
| 72 |
+
from omegaconf import OmegaConf
|
| 73 |
+
|
| 74 |
+
|
| 75 |
def _load_file_from_url(url, model_dir='./', file_name=None):
|
| 76 |
"""Helper function to download files from a URL to a local directory."""
|
| 77 |
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
| 82 |
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
|
| 83 |
return cached_file
|
| 84 |
|
| 85 |
+
class SeedVrManager:
|
| 86 |
"""
|
| 87 |
+
Manages the SeedVR model for HD Mastering tasks.
|
|
|
|
| 88 |
"""
|
| 89 |
def __init__(self, workspace_dir="deformes_workspace"):
|
| 90 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 91 |
self.runner = None
|
| 92 |
self.workspace_dir = workspace_dir
|
| 93 |
self.is_initialized = False
|
| 94 |
+
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
def _download_models(self):
|
| 97 |
"""Downloads the necessary checkpoints for SeedVR2."""
|
|
|
|
| 114 |
|
| 115 |
def _initialize_runner(self, model_version: str):
|
| 116 |
"""Loads and configures the SeedVR model on demand based on the selected version."""
|
| 117 |
+
if self.runner is not None: return
|
| 118 |
+
|
|
|
|
|
|
|
| 119 |
self._download_models()
|
| 120 |
|
| 121 |
logger.info(f"Initializing SeedVR2 {model_version} runner...")
|
|
|
|
| 145 |
def _unload_runner(self):
|
| 146 |
"""Removes the runner from VRAM to free resources."""
|
| 147 |
if self.runner is not None:
|
| 148 |
+
del self.runner; self.runner = None
|
| 149 |
+
gc.collect(); torch.cuda.empty_cache()
|
|
|
|
|
|
|
| 150 |
self.is_initialized = False
|
| 151 |
logger.info("SeedVR2 runner unloaded from VRAM.")
|
| 152 |
|
|
|
|
| 191 |
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
|
| 192 |
|
| 193 |
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
|
| 194 |
+
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 197 |
|
|
|
|
| 205 |
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
|
| 206 |
|
| 207 |
final_sample = wavelet_reconstruction(
|
| 208 |
+
rearrange(final_sample, "c t h w -> t c h w"),
|
| 209 |
rearrange(input_video_sample, "c t h w -> t c h w")
|
| 210 |
)
|
| 211 |
+
|
| 212 |
final_sample = rearrange(final_sample, "t c h w -> t h w c")
|
| 213 |
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 214 |
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
|
|
|
| 216 |
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 217 |
logger.info(f"HD Mastered video saved to: {output_video_path}")
|
| 218 |
return output_video_path
|
|
|
|
| 219 |
finally:
|
| 220 |
self._unload_runner()
|
| 221 |
|
| 222 |
+
# --- Singleton Instance ---
|
| 223 |
+
seedvr_manager_singleton = SeedVrManager()
|