euiia commited on
Commit
afebbd9
·
verified ·
1 Parent(s): 5805aac

Delete deformes4D_engine.py

Browse files
Files changed (1) hide show
  1. deformes4D_engine.py +0 -258
deformes4D_engine.py DELETED
@@ -1,258 +0,0 @@
1
- # deformes4D_engine.py
2
- # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
- # (Licenciamento e cabeçalhos permanecem os mesmos)
4
-
5
- import os
6
- import time
7
- import imageio
8
- import numpy as np
9
- import torch
10
- import logging
11
- from PIL import Image, ImageOps
12
- from dataclasses import dataclass
13
- import gradio as gr
14
- import subprocess
15
- import gc
16
-
17
- from ltx_manager_helpers import ltx_manager_singleton
18
- from gemini_helpers import gemini_singleton
19
- from upscaler_specialist import upscaler_specialist_singleton
20
- from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
21
- from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
22
-
23
- logger = logging.getLogger(__name__)
24
-
25
- @dataclass
26
- class LatentConditioningItem:
27
- latent_tensor: torch.Tensor
28
- media_frame_number: int
29
- conditioning_strength: float
30
-
31
- class Deformes4DEngine:
32
- def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
33
- self.ltx_manager = ltx_manager
34
- self.workspace_dir = workspace_dir
35
- self._vae = None
36
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
37
- logger.info("Especialista Deformes4D (Executor ADUC-SDR: Câmera Ψ e Destilador Δ) inicializado.")
38
-
39
- @property
40
- def vae(self):
41
- if self._vae is None:
42
- self._vae = self.ltx_manager.workers[0].pipeline.vae
43
- self._vae.to(self.device); self._vae.eval()
44
- return self._vae
45
-
46
- # MÉTODOS AUXILIARES (IDÊNTICOS AO v35)
47
- def save_latent_tensor(self, tensor: torch.Tensor, path: str):
48
- torch.save(tensor.cpu(), path)
49
-
50
- def load_latent_tensor(self, path: str) -> torch.Tensor:
51
- return torch.load(path, map_location=self.device)
52
-
53
- @torch.no_grad()
54
- def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
55
- tensor = tensor.to(self.device, dtype=self.vae.dtype)
56
- return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
57
-
58
- @torch.no_grad()
59
- def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
60
- latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
61
- timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
62
- return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
63
-
64
- def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
65
- if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
66
- video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
67
- video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
68
- video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
69
- with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
70
- for frame in video_np: writer.append_data(frame)
71
-
72
- def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
73
- if image.size != target_resolution:
74
- return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
75
- return image
76
-
77
- def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
78
- image_np = np.array(pil_image).astype(np.float32) / 255.0
79
- tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
80
- tensor = (tensor * 2.0) - 1.0
81
- return self.pixels_to_latents(tensor)
82
-
83
- def _get_video_frame_count(self, video_path: str) -> int | None:
84
- if not os.path.exists(video_path): return None
85
- cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-count_frames',
86
- '-show_entries', 'stream=nb_read_frames', '-of', 'default=nokey=1:noprint_wrappers=1', video_path]
87
- try:
88
- result = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8')
89
- return int(result.stdout.strip())
90
- except Exception: return None
91
-
92
- def _trim_last_frame_ffmpeg(self, input_path: str, output_path: str) -> bool:
93
- frame_count = self._get_video_frame_count(input_path)
94
- if frame_count is None or frame_count < 2:
95
- if os.path.exists(input_path): os.rename(input_path, output_path)
96
- return True
97
- vf_filter = f"select='lt(n,{frame_count - 1})',setpts=PTS-STARTPTS"
98
- cmd_list = ['ffmpeg', '-y', '-i', input_path, '-vf', vf_filter, '-an', output_path]
99
- try:
100
- subprocess.run(cmd_list, check=True, capture_output=True, text=True, encoding='utf-8')
101
- return True
102
- except subprocess.CalledProcessError: return False
103
-
104
- def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
105
- if not video_paths: raise gr.Error("Nenhum fragmento de vídeo para montar.")
106
- list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
107
- with open(list_file_path, 'w', encoding='utf-8') as f:
108
- for path in video_paths: f.write(f"file '{os.path.abspath(path)}'\n")
109
- cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
110
- try:
111
- subprocess.run(cmd_list, check=True, capture_output=True, text=True)
112
- except subprocess.CalledProcessError as e:
113
- raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
114
- return output_path
115
-
116
- # --- PIPELINE DE PÓS-PRODUÇÃO LATENTE ---
117
- def _render_and_post_process_latents(self,
118
- low_res_latents: torch.Tensor,
119
- base_name: str,
120
- conditioning_items_for_refine: list,
121
- motion_prompt_for_refine: str
122
- ) -> str:
123
- high_res_latents = upscaler_specialist_singleton.upscale(low_res_latents)
124
-
125
- _, _, _, refined_h_latent, refined_w_latent = high_res_latents.shape
126
- video_h = refined_h_latent * self.ltx_manager.workers[0].pipeline.vae_scale_factor
127
- video_w = refined_w_latent * self.ltx_manager.workers[0].pipeline.vae_scale_factor
128
- num_latent_frames = high_res_latents.shape[2]
129
- num_video_frames = num_latent_frames * self.ltx_manager.workers[0].pipeline.video_scale_factor
130
- if isinstance(self.vae, CausalVideoAutoencoder):
131
- num_video_frames -= 1
132
-
133
- refine_kwargs = {
134
- 'height': video_h, 'width': video_w, 'video_total_frames': num_video_frames, 'video_fps': 24,
135
- 'current_fragment_index': int(time.time()), 'motion_prompt': motion_prompt_for_refine,
136
- 'conditioning_items_data': conditioning_items_for_refine,
137
- 'denoise_strength': 0.4, 'refine_steps': 10
138
- }
139
-
140
- final_latents, _ = self.ltx_manager.refine_latents(high_res_latents, **refine_kwargs)
141
-
142
- untrimmed_video_path = os.path.join(self.workspace_dir, f"{base_name}_untrimmed.mp4")
143
- trimmed_video_path = os.path.join(self.workspace_dir, f"{base_name}.mp4")
144
-
145
- pixel_tensor = self.latents_to_pixels(final_latents)
146
- self.save_video_from_tensor(pixel_tensor, untrimmed_video_path, fps=24)
147
- del pixel_tensor, final_latents, high_res_latents
148
- gc.collect()
149
- torch.cuda.empty_cache()
150
-
151
- success = self._trim_last_frame_ffmpeg(untrimmed_video_path, trimmed_video_path)
152
-
153
- if os.path.exists(untrimmed_video_path):
154
- os.remove(untrimmed_video_path)
155
-
156
- return trimmed_video_path if success else untrimmed_video_path
157
-
158
- # NÚCLEO DA LÓGICA ADUC-SDR
159
- def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
160
- seconds_per_fragment: float, trim_percent: int,
161
- handler_strength: float, destination_convergence_strength: float,
162
- video_resolution: int, use_continuity_director: bool,
163
- progress: gr.Progress = gr.Progress()):
164
-
165
- FPS = 24
166
- FRAMES_PER_LATENT_CHUNK = 8
167
- ECO_LATENT_CHUNKS = 2
168
-
169
- total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
170
- total_latents_brutos = total_frames_brutos // FRAMES_PER_LATENT_CHUNK
171
- frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
172
- latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
173
-
174
- if total_latents_brutos <= latents_a_podar + 1:
175
- raise gr.Error(f"A combinação de duração e poda é muito agressiva.")
176
-
177
- DEJAVU_FRAME_TARGET = frames_a_podar - 1
178
- DESTINATION_FRAME_TARGET = total_frames_brutos - 1
179
-
180
- base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20, "image_cond_noise_scale": 0.00}
181
- keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
182
- video_clips_paths, story_history = [], ""
183
- target_resolution_tuple = (video_resolution, video_resolution)
184
-
185
- eco_latent_for_next_loop = None
186
- dejavu_latent_for_next_loop = None
187
-
188
- num_transitions_to_generate = len(keyframe_paths) - 1
189
-
190
- for i in range(num_transitions_to_generate):
191
- fragment_index = i + 1
192
- progress(fragment_index / num_transitions_to_generate, desc=f"Produzindo Transição {fragment_index}/{num_transitions_to_generate}")
193
-
194
- past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
195
- start_keyframe_path = keyframe_paths[i]
196
- destination_keyframe_path = keyframe_paths[i + 1]
197
- future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
198
- decision = gemini_singleton.get_cinematic_decision(
199
- global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
200
- storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
201
- transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
202
- story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
203
-
204
- conditioning_items = []
205
- if eco_latent_for_next_loop is None:
206
- img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
207
- conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
208
- else:
209
- conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
210
- conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
211
- img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
212
- conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
213
-
214
- current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
215
- latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
216
-
217
- last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
218
- eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()
219
- dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
220
- latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
221
- latents_video = latents_video[:, :, 1:, :, :]
222
-
223
- if transition_type == "cut":
224
- eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
225
-
226
- base_name = f"fragment_{fragment_index}_{int(time.time())}"
227
- video_path = self._render_and_post_process_latents(
228
- low_res_latents=latents_video, base_name=base_name,
229
- conditioning_items_for_refine=conditioning_items,
230
- motion_prompt_for_refine=motion_prompt)
231
- video_clips_paths.append(video_path)
232
- yield {"fragment_path": video_path}
233
-
234
- if eco_latent_for_next_loop is not None:
235
- eco_base_name = f"fragment_{fragment_index}_eco_diagnostic"
236
- eco_pixel_tensor = self.latents_to_pixels(eco_latent_for_next_loop)
237
- eco_video_path = os.path.join(self.workspace_dir, f"{eco_base_name}.mp4")
238
- self.save_video_from_tensor(eco_pixel_tensor, eco_video_path)
239
- video_clips_paths.append(eco_video_path)
240
- yield {"fragment_path": eco_video_path}
241
-
242
- final_movie_path = os.path.join(self.workspace_dir, f"final_movie_silent_{int(time.time())}.mp4")
243
- self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
244
-
245
- yield {"final_path": final_movie_path}
246
-
247
- def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
248
- kwargs = {
249
- **ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
250
- 'video_total_frames': total_frames_to_generate, 'video_fps': 24,
251
- 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
252
- }
253
- return self.ltx_manager.generate_latent_fragment(**kwargs)
254
-
255
- def _quantize_to_multiple(self, n, m):
256
- if m == 0: return n
257
- quantized = int(round(n / m) * m)
258
- return m if n > 0 and quantized == 0 else quantized