Create vae_manager.py
Browse files- managers/vae_manager.py +87 -0
managers/vae_manager.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# managers/vae_manager.py
|
| 2 |
+
#
|
| 3 |
+
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
| 4 |
+
#
|
| 5 |
+
# Version: 1.0.0
|
| 6 |
+
#
|
| 7 |
+
# This file defines the VaeManager specialist. Its purpose is to abstract all
|
| 8 |
+
# direct interactions with the Variational Autoencoder (VAE) model. It handles
|
| 9 |
+
# the model's state (CPU/GPU memory), provides clean interfaces for encoding and
|
| 10 |
+
# decoding, and ensures that the heavy VAE model only occupies VRAM when actively
|
| 11 |
+
# performing a task, freeing up resources for other specialists.
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import logging
|
| 15 |
+
import gc
|
| 16 |
+
from typing import Generator
|
| 17 |
+
|
| 18 |
+
# Import the source of the VAE model and the low-level functions
|
| 19 |
+
from managers.ltx_manager import ltx_manager_singleton
|
| 20 |
+
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 21 |
+
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
class VaeManager:
|
| 25 |
+
"""
|
| 26 |
+
A specialist for managing the LTX VAE model. It provides high-level methods
|
| 27 |
+
for encoding pixels to latents and decoding latents to pixels, while managing
|
| 28 |
+
the model's presence on the GPU to conserve VRAM.
|
| 29 |
+
"""
|
| 30 |
+
def __init__(self, vae_model):
|
| 31 |
+
self.vae = vae_model
|
| 32 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 33 |
+
self.cpu_device = torch.device('cpu')
|
| 34 |
+
|
| 35 |
+
# Initialize the VAE on the CPU to keep VRAM free at startup
|
| 36 |
+
self.vae.to(self.cpu_device)
|
| 37 |
+
logger.info(f"VaeManager initialized. VAE model is on CPU.")
|
| 38 |
+
|
| 39 |
+
def to_gpu(self):
|
| 40 |
+
"""Moves the VAE model to the active GPU."""
|
| 41 |
+
if self.device == 'cpu': return
|
| 42 |
+
logger.info("VaeManager: Moving VAE to GPU...")
|
| 43 |
+
self.vae.to(self.device)
|
| 44 |
+
|
| 45 |
+
def to_cpu(self):
|
| 46 |
+
"""Moves the VAE model to the CPU and clears VRAM cache."""
|
| 47 |
+
if self.device == 'cpu': return
|
| 48 |
+
logger.info("VaeManager: Unloading VAE from GPU...")
|
| 49 |
+
self.vae.to(self.cpu_device)
|
| 50 |
+
gc.collect()
|
| 51 |
+
if torch.cuda.is_available():
|
| 52 |
+
torch.cuda.empty_cache()
|
| 53 |
+
|
| 54 |
+
@torch.no_grad()
|
| 55 |
+
def encode(self, pixel_tensor: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
"""
|
| 57 |
+
Encodes a pixel-space tensor to the latent space.
|
| 58 |
+
Manages moving the VAE to and from the GPU.
|
| 59 |
+
"""
|
| 60 |
+
try:
|
| 61 |
+
self.to_gpu()
|
| 62 |
+
pixel_tensor = pixel_tensor.to(self.device, dtype=self.vae.dtype)
|
| 63 |
+
latents = vae_encode(pixel_tensor, self.vae, vae_per_channel_normalize=True)
|
| 64 |
+
return latents.to(self.cpu_device) # Return to CPU to free VRAM
|
| 65 |
+
finally:
|
| 66 |
+
self.to_cpu()
|
| 67 |
+
|
| 68 |
+
@torch.no_grad()
|
| 69 |
+
def decode(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
|
| 70 |
+
"""
|
| 71 |
+
Decodes a latent-space tensor to pixels.
|
| 72 |
+
Manages moving the VAE to and from the GPU.
|
| 73 |
+
"""
|
| 74 |
+
try:
|
| 75 |
+
self.to_gpu()
|
| 76 |
+
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
|
| 77 |
+
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
|
| 78 |
+
pixels = vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
|
| 79 |
+
return pixels.to(self.cpu_device) # Return to CPU to free VRAM
|
| 80 |
+
finally:
|
| 81 |
+
self.to_cpu()
|
| 82 |
+
|
| 83 |
+
# --- Singleton Instance ---
|
| 84 |
+
# The VaeManager must use the exact same VAE instance as the LTX pipeline to ensure
|
| 85 |
+
# latent space compatibility. We source it directly from the already-initialized ltx_manager.
|
| 86 |
+
source_vae_model = ltx_manager_singleton.workers[0].pipeline.vae
|
| 87 |
+
vae_manager_singleton = VaeManager(source_vae_model)
|