Update aduc_framework/managers/ltx_manager.py
Browse files
aduc_framework/managers/ltx_manager.py
CHANGED
|
@@ -3,6 +3,11 @@
|
|
| 3 |
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
# Versão 2.3.2 (Com correção de manipulação de dataclass)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import gc
|
|
@@ -17,19 +22,108 @@ import subprocess
|
|
| 17 |
from pathlib import Path
|
| 18 |
from typing import Optional, List, Tuple, Union
|
| 19 |
|
|
|
|
| 20 |
from ..types import LatentConditioningItem
|
| 21 |
from ..tools.optimization import optimize_ltx_worker, can_optimize_fp8
|
| 22 |
from ..tools.hardware_manager import hardware_manager
|
| 23 |
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
# --- Gerenciamento de Dependências e Placeholders
|
| 27 |
DEPS_DIR = Path("./deps")
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
class LtxPoolManager:
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def _prepare_pipeline_params(self, worker: 'LtxWorker', **kwargs) -> dict:
|
| 34 |
pipeline_params = {
|
| 35 |
"height": kwargs['height'], "width": kwargs['width'], "num_frames": kwargs['video_total_frames'],
|
|
@@ -46,16 +140,14 @@ class LtxPoolManager:
|
|
| 46 |
if 'strength' in kwargs:
|
| 47 |
pipeline_params["strength"] = kwargs['strength']
|
| 48 |
|
| 49 |
-
# --- A CORREÇÃO ESTÁ AQUI ---
|
| 50 |
if 'conditioning_items_data' in kwargs:
|
| 51 |
final_conditioning_items = []
|
| 52 |
for item in kwargs['conditioning_items_data']:
|
| 53 |
-
# Como LatentConditioningItem é uma dataclass mutável,
|
| 54 |
-
# nós modificamos o atributo diretamente.
|
| 55 |
item.latent_tensor = item.latent_tensor.to(worker.device)
|
| 56 |
final_conditioning_items.append(item)
|
| 57 |
pipeline_params["conditioning_items"] = final_conditioning_items
|
| 58 |
-
# --- FIM DA CORREÇÃO ---
|
| 59 |
|
| 60 |
if worker.is_distilled:
|
| 61 |
fixed_timesteps = worker.config.get("first_pass", {}).get("timesteps")
|
|
@@ -70,9 +162,139 @@ class LtxPoolManager:
|
|
| 70 |
|
| 71 |
return pipeline_params
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
# --- Instanciação Singleton
|
| 76 |
with open("config.yaml", 'r') as f:
|
| 77 |
config = yaml.safe_load(f)
|
| 78 |
ltx_gpus_required = config['specialists']['ltx']['gpus_required']
|
|
|
|
| 3 |
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
# Versão 2.3.2 (Com correção de manipulação de dataclass)
|
| 6 |
+
#
|
| 7 |
+
# Este manager é responsável por controlar a pipeline LTX-Video. Ele gerencia
|
| 8 |
+
# um pool de workers para otimizar o uso de múltiplas GPUs, lida com a inicialização
|
| 9 |
+
# e o setup de dependências complexas, e expõe uma interface de alto nível para a
|
| 10 |
+
# geração de fragmentos de vídeo no espaço latente.
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import gc
|
|
|
|
| 22 |
from pathlib import Path
|
| 23 |
from typing import Optional, List, Tuple, Union
|
| 24 |
|
| 25 |
+
# --- Imports Relativos Corrigidos ---
|
| 26 |
from ..types import LatentConditioningItem
|
| 27 |
from ..tools.optimization import optimize_ltx_worker, can_optimize_fp8
|
| 28 |
from ..tools.hardware_manager import hardware_manager
|
| 29 |
|
| 30 |
logger = logging.getLogger(__name__)
|
| 31 |
|
| 32 |
+
# --- Gerenciamento de Dependências e Placeholders ---
|
| 33 |
DEPS_DIR = Path("./deps")
|
| 34 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 35 |
+
LTX_VIDEO_REPO_URL = "https://github.com/Lightricks/LTX-Video.git"
|
| 36 |
+
|
| 37 |
+
# Placeholders para módulos importados tardiamente (lazy-loaded)
|
| 38 |
+
create_ltx_video_pipeline = None
|
| 39 |
+
calculate_padding = None
|
| 40 |
+
LTXVideoPipeline = None
|
| 41 |
+
ConditioningItem = None
|
| 42 |
+
LTXMultiScalePipeline = None
|
| 43 |
+
vae_encode = None
|
| 44 |
+
latent_to_pixel_coords = None
|
| 45 |
+
randn_tensor = None
|
| 46 |
|
| 47 |
class LtxPoolManager:
|
| 48 |
+
"""
|
| 49 |
+
Gerencia um pool de LtxWorkers e expõe a pipeline de aprimoramento de prompt.
|
| 50 |
+
"""
|
| 51 |
+
def __init__(self, device_ids: List[str], ltx_config_file_name: str):
|
| 52 |
+
logger.info(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}")
|
| 53 |
+
self._ltx_modules_loaded = False
|
| 54 |
+
self._setup_dependencies()
|
| 55 |
+
self._lazy_load_ltx_modules()
|
| 56 |
+
|
| 57 |
+
self.ltx_config_file = LTX_VIDEO_REPO_DIR / "configs" / ltx_config_file_name
|
| 58 |
+
|
| 59 |
+
self.workers = [LtxWorker(dev_id, self.ltx_config_file) for dev_id in device_ids]
|
| 60 |
+
self.current_worker_index = 0
|
| 61 |
+
self.lock = threading.Lock()
|
| 62 |
+
|
| 63 |
+
self.prompt_enhancement_pipeline = self.workers[0].pipeline if self.workers else None
|
| 64 |
+
if self.prompt_enhancement_pipeline:
|
| 65 |
+
logger.info("LTX POOL MANAGER: Pipeline de aprimoramento de prompt exposta para outros especialistas.")
|
| 66 |
+
|
| 67 |
+
self._apply_ltx_pipeline_patches()
|
| 68 |
+
|
| 69 |
+
if all(w.device.type == 'cuda' for w in self.workers):
|
| 70 |
+
logger.info("LTX POOL MANAGER: MODO HOT START ATIVADO. Pré-aquecendo todas as GPUs...")
|
| 71 |
+
for worker in self.workers:
|
| 72 |
+
worker.to_gpu()
|
| 73 |
+
logger.info("LTX POOL MANAGER: Todas as GPUs estão prontas.")
|
| 74 |
+
else:
|
| 75 |
+
logger.info("LTX POOL MANAGER: Operando em modo CPU ou misto. Pré-aquecimento de GPU pulado.")
|
| 76 |
+
|
| 77 |
+
def _setup_dependencies(self):
|
| 78 |
+
"""Clona o repositório LTX-Video se não encontrado e o adiciona ao sys.path."""
|
| 79 |
+
if not LTX_VIDEO_REPO_DIR.exists():
|
| 80 |
+
logger.info(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Clonando do GitHub...")
|
| 81 |
+
try:
|
| 82 |
+
DEPS_DIR.mkdir(exist_ok=True)
|
| 83 |
+
subprocess.run(
|
| 84 |
+
["git", "clone", "--depth", "1", LTX_VIDEO_REPO_URL, str(LTX_VIDEO_REPO_DIR)],
|
| 85 |
+
check=True, capture_output=True, text=True
|
| 86 |
+
)
|
| 87 |
+
logger.info("Repositório LTX-Video clonado com sucesso.")
|
| 88 |
+
except subprocess.CalledProcessError as e:
|
| 89 |
+
logger.error(f"Falha ao clonar o repositório LTX-Video. Git stderr: {e.stderr}")
|
| 90 |
+
raise RuntimeError("Não foi possível clonar a dependência LTX-Video do GitHub.")
|
| 91 |
+
else:
|
| 92 |
+
logger.info("Repositório LTX-Video local encontrado.")
|
| 93 |
+
|
| 94 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 95 |
+
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
|
| 96 |
+
logger.info(f"Adicionado '{LTX_VIDEO_REPO_DIR.resolve()}' ao sys.path.")
|
| 97 |
+
|
| 98 |
+
def _lazy_load_ltx_modules(self):
|
| 99 |
+
"""Importa dinamicamente os módulos do LTX-Video após garantir que o repositório existe."""
|
| 100 |
+
if self._ltx_modules_loaded:
|
| 101 |
+
return
|
| 102 |
+
|
| 103 |
+
global create_ltx_video_pipeline, calculate_padding, LTXVideoPipeline, ConditioningItem, LTXMultiScalePipeline
|
| 104 |
+
global vae_encode, latent_to_pixel_coords, randn_tensor
|
| 105 |
+
|
| 106 |
+
from .ltx_pipeline_utils import create_ltx_video_pipeline, calculate_padding
|
| 107 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem, LTXMultiScalePipeline
|
| 108 |
+
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords
|
| 109 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 110 |
+
|
| 111 |
+
self._ltx_modules_loaded = True
|
| 112 |
+
logger.info("Módulos do LTX-Video foram carregados dinamicamente.")
|
| 113 |
|
| 114 |
+
def _apply_ltx_pipeline_patches(self):
|
| 115 |
+
"""Aplica patches em tempo de execução na pipeline LTX para compatibilidade com ADUC-SDR."""
|
| 116 |
+
logger.info("LTX POOL MANAGER: Aplicando patches ADUC-SDR na pipeline LTX...")
|
| 117 |
+
for worker in self.workers:
|
| 118 |
+
worker.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(worker.pipeline, LTXVideoPipeline)
|
| 119 |
+
logger.info("LTX POOL MANAGER: Todas as instâncias da pipeline foram corrigidas com sucesso.")
|
| 120 |
+
|
| 121 |
+
def _get_next_worker(self) -> 'LtxWorker':
|
| 122 |
+
with self.lock:
|
| 123 |
+
worker = self.workers[self.current_worker_index]
|
| 124 |
+
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
|
| 125 |
+
return worker
|
| 126 |
+
|
| 127 |
def _prepare_pipeline_params(self, worker: 'LtxWorker', **kwargs) -> dict:
|
| 128 |
pipeline_params = {
|
| 129 |
"height": kwargs['height'], "width": kwargs['width'], "num_frames": kwargs['video_total_frames'],
|
|
|
|
| 140 |
if 'strength' in kwargs:
|
| 141 |
pipeline_params["strength"] = kwargs['strength']
|
| 142 |
|
|
|
|
| 143 |
if 'conditioning_items_data' in kwargs:
|
| 144 |
final_conditioning_items = []
|
| 145 |
for item in kwargs['conditioning_items_data']:
|
| 146 |
+
# CORREÇÃO: Como LatentConditioningItem é uma dataclass mutável,
|
| 147 |
+
# nós modificamos o atributo diretamente no dispositivo do worker.
|
| 148 |
item.latent_tensor = item.latent_tensor.to(worker.device)
|
| 149 |
final_conditioning_items.append(item)
|
| 150 |
pipeline_params["conditioning_items"] = final_conditioning_items
|
|
|
|
| 151 |
|
| 152 |
if worker.is_distilled:
|
| 153 |
fixed_timesteps = worker.config.get("first_pass", {}).get("timesteps")
|
|
|
|
| 162 |
|
| 163 |
return pipeline_params
|
| 164 |
|
| 165 |
+
def generate_latent_fragment(self, **kwargs) -> Tuple[torch.Tensor, tuple]:
|
| 166 |
+
worker_to_use = self._get_next_worker()
|
| 167 |
+
try:
|
| 168 |
+
height, width = kwargs['height'], kwargs['width']
|
| 169 |
+
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
| 170 |
+
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
| 171 |
+
kwargs['height'], kwargs['width'] = padded_h, padded_w
|
| 172 |
+
|
| 173 |
+
pipeline_params = self._prepare_pipeline_params(worker_to_use, **kwargs)
|
| 174 |
+
|
| 175 |
+
logger.info(f"Iniciando GERAÇÃO em {worker_to_use.device} com shape {padded_w}x{padded_h}")
|
| 176 |
+
|
| 177 |
+
if isinstance(worker_to_use.pipeline, LTXMultiScalePipeline):
|
| 178 |
+
result = worker_to_use.pipeline.video_pipeline(**pipeline_params).images
|
| 179 |
+
else:
|
| 180 |
+
result = worker_to_use.generate_video_fragment_internal(**pipeline_params)
|
| 181 |
+
return result, padding_vals
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logger.error(f"LTX POOL MANAGER: Erro durante a geração em {worker_to_use.device}: {e}", exc_info=True)
|
| 184 |
+
raise e
|
| 185 |
+
finally:
|
| 186 |
+
if worker_to_use and worker_to_use.device.type == 'cuda':
|
| 187 |
+
with torch.cuda.device(worker_to_use.device):
|
| 188 |
+
gc.collect()
|
| 189 |
+
torch.cuda.empty_cache()
|
| 190 |
+
|
| 191 |
+
def refine_latents(self, latents_to_refine: torch.Tensor, **kwargs) -> Tuple[torch.Tensor, tuple]:
|
| 192 |
+
pass # Placeholder
|
| 193 |
+
|
| 194 |
+
class LtxWorker:
|
| 195 |
+
"""Representa uma única instância da pipeline LTX-Video em um dispositivo específico."""
|
| 196 |
+
def __init__(self, device_id, ltx_config_file):
|
| 197 |
+
self.cpu_device = torch.device('cpu')
|
| 198 |
+
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
|
| 199 |
+
logger.info(f"LTX Worker ({self.device}): Inicializando com config '{ltx_config_file}'...")
|
| 200 |
+
|
| 201 |
+
with open(ltx_config_file, "r") as file:
|
| 202 |
+
self.config = yaml.safe_load(file)
|
| 203 |
+
|
| 204 |
+
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "")
|
| 205 |
+
models_dir = LTX_VIDEO_REPO_DIR / "models_downloaded"
|
| 206 |
+
|
| 207 |
+
logger.info(f"LTX Worker ({self.device}): Preparando para carregar modelo...")
|
| 208 |
+
model_filename = self.config["checkpoint_path"]
|
| 209 |
+
model_path = huggingface_hub.hf_hub_download(
|
| 210 |
+
repo_id="Lightricks/LTX-Video", filename=model_filename,
|
| 211 |
+
local_dir=str(models_dir), local_dir_use_symlinks=False
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
self.pipeline = create_ltx_video_pipeline(
|
| 215 |
+
ckpt_path=model_path,
|
| 216 |
+
precision=self.config["precision"],
|
| 217 |
+
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 218 |
+
sampler=self.config["sampler"],
|
| 219 |
+
device='cpu'
|
| 220 |
+
)
|
| 221 |
+
logger.info(f"LTX Worker ({self.device}): Modelo pronto na CPU. É um modelo distilled? {self.is_distilled}")
|
| 222 |
+
|
| 223 |
+
def to_gpu(self):
|
| 224 |
+
if self.device.type == 'cpu': return
|
| 225 |
+
logger.info(f"LTX Worker: Movendo pipeline para a GPU {self.device}...")
|
| 226 |
+
self.pipeline.to(self.device)
|
| 227 |
+
if self.device.type == 'cuda' and can_optimize_fp8():
|
| 228 |
+
logger.info(f"LTX Worker ({self.device}): GPU com suporte a FP8 detectada. Otimizando...")
|
| 229 |
+
optimize_ltx_worker(self)
|
| 230 |
+
logger.info(f"LTX Worker ({self.device}): Otimização completa.")
|
| 231 |
+
|
| 232 |
+
def to_cpu(self):
|
| 233 |
+
if self.device.type == 'cpu': return
|
| 234 |
+
logger.info(f"LTX Worker: Descarregando pipeline da GPU {self.device}...")
|
| 235 |
+
self.pipeline.to('cpu')
|
| 236 |
+
gc.collect()
|
| 237 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 238 |
+
|
| 239 |
+
def generate_video_fragment_internal(self, **kwargs):
|
| 240 |
+
return self.pipeline(**kwargs).images
|
| 241 |
+
|
| 242 |
+
def _aduc_prepare_conditioning_patch(
|
| 243 |
+
self: "LTXVideoPipeline",
|
| 244 |
+
conditioning_items: Optional[List[Union["ConditioningItem", "LatentConditioningItem"]]],
|
| 245 |
+
init_latents: torch.Tensor,
|
| 246 |
+
num_frames: int,
|
| 247 |
+
height: int,
|
| 248 |
+
width: int,
|
| 249 |
+
vae_per_channel_normalize: bool = False,
|
| 250 |
+
generator=None,
|
| 251 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 252 |
+
if not conditioning_items:
|
| 253 |
+
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 254 |
+
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 255 |
+
return init_latents, init_pixel_coords, None, 0
|
| 256 |
+
|
| 257 |
+
init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
|
| 258 |
+
extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
|
| 259 |
+
extra_conditioning_num_latents = 0
|
| 260 |
+
|
| 261 |
+
for item in conditioning_items:
|
| 262 |
+
if not isinstance(item, LatentConditioningItem):
|
| 263 |
+
logger.warning("Patch ADUC: Item de condicionamento não é um LatentConditioningItem e será ignorado.")
|
| 264 |
+
continue
|
| 265 |
+
|
| 266 |
+
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
|
| 267 |
+
media_frame_number, strength = item.media_frame_number, item.conditioning_strength
|
| 268 |
+
|
| 269 |
+
if media_frame_number == 0:
|
| 270 |
+
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 271 |
+
init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
|
| 272 |
+
init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
|
| 273 |
+
else:
|
| 274 |
+
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
|
| 275 |
+
media_item_latents = torch.lerp(noise, media_item_latents, strength)
|
| 276 |
+
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
|
| 277 |
+
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 278 |
+
pixel_coords[:, 0] += media_frame_number
|
| 279 |
+
extra_conditioning_num_latents += patched_latents.shape[1]
|
| 280 |
+
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
|
| 281 |
+
extra_conditioning_latents.append(patched_latents)
|
| 282 |
+
extra_conditioning_pixel_coords.append(pixel_coords)
|
| 283 |
+
extra_conditioning_mask.append(new_mask)
|
| 284 |
+
|
| 285 |
+
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 286 |
+
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 287 |
+
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
|
| 288 |
+
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
|
| 289 |
+
|
| 290 |
+
if extra_conditioning_latents:
|
| 291 |
+
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
|
| 292 |
+
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
|
| 293 |
+
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
|
| 294 |
+
|
| 295 |
+
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
|
| 296 |
|
| 297 |
+
# --- Instanciação Singleton ---
|
| 298 |
with open("config.yaml", 'r') as f:
|
| 299 |
config = yaml.safe_load(f)
|
| 300 |
ltx_gpus_required = config['specialists']['ltx']['gpus_required']
|