Update engineers/deformes7D.py
Browse files- engineers/deformes7D.py +33 -89
engineers/deformes7D.py
CHANGED
|
@@ -1,32 +1,6 @@
|
|
| 1 |
# engineers/deformes7D.py
|
| 2 |
-
#
|
| 3 |
-
# AducSdr: Uma implementa莽茫o aberta e funcional da arquitetura ADUC-SDR
|
| 4 |
-
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 5 |
#
|
| 6 |
-
#
|
| 7 |
-
# Carlos Rodrigues dos Santos
|
| 8 |
-
# carlex22@gmail.com
|
| 9 |
-
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
| 10 |
-
#
|
| 11 |
-
# Reposit贸rios e Projetos Relacionados:
|
| 12 |
-
# GitHub: https://github.com/carlex22/Aduc-sdr
|
| 13 |
-
#
|
| 14 |
-
# This program is free software: you can redistribute it and/or modify
|
| 15 |
-
# it under the terms of the GNU Affero General Public License as published by
|
| 16 |
-
# the Free Software Foundation, either version 3 of the License, or
|
| 17 |
-
# (at your option) any later version.
|
| 18 |
-
#
|
| 19 |
-
# This program is distributed in the hope that it will be useful,
|
| 20 |
-
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 21 |
-
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 22 |
-
# GNU Affero General Public License for more details.
|
| 23 |
-
#
|
| 24 |
-
# You should have received a copy of the GNU Affero General Public License
|
| 25 |
-
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 26 |
-
#
|
| 27 |
-
# This program is free software: you can redistribute it and/or modify
|
| 28 |
-
# it under the terms of the GNU Affero General Public License...
|
| 29 |
-
# PENDING PATENT NOTICE: Please see NOTICE.md.
|
| 30 |
#
|
| 31 |
# Version: 3.0.0
|
| 32 |
#
|
|
@@ -47,7 +21,7 @@ import subprocess
|
|
| 47 |
import gc
|
| 48 |
import shutil
|
| 49 |
from pathlib import Path
|
| 50 |
-
from typing import List, Tuple,
|
| 51 |
|
| 52 |
from aduc_types import LatentConditioningItem
|
| 53 |
from managers.ltx_manager import ltx_manager_singleton
|
|
@@ -70,22 +44,19 @@ class Deformes7DEngine:
|
|
| 70 |
logger.info("Deformes7D Unified Engine initialized.")
|
| 71 |
os.makedirs(self.workspace_dir, exist_ok=True)
|
| 72 |
|
| 73 |
-
# --- HELPER METHODS
|
| 74 |
|
| 75 |
def _preprocess_image(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
| 76 |
-
"""Resizes and fits an image to the target resolution."""
|
| 77 |
if image.size != target_resolution:
|
| 78 |
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 79 |
return image
|
| 80 |
|
| 81 |
def _pil_to_pixel_tensor(self, pil_image: Image.Image) -> torch.Tensor:
|
| 82 |
-
"""Converts PIL to the 5D pixel tensor for VAE encoding."""
|
| 83 |
image_np = np.array(pil_image).astype(np.float32) / 255.0
|
| 84 |
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 85 |
return (tensor * 2.0) - 1.0
|
| 86 |
|
| 87 |
def _save_image_from_tensor(self, pixel_tensor: torch.Tensor, path: str):
|
| 88 |
-
"""Saves a 1-frame pixel tensor as a PNG image."""
|
| 89 |
tensor_chw = pixel_tensor.squeeze(0).squeeze(1)
|
| 90 |
tensor_hwc = tensor_chw.permute(1, 2, 0)
|
| 91 |
tensor_hwc = (tensor_hwc.clamp(-1, 1) + 1) / 2.0
|
|
@@ -93,7 +64,6 @@ class Deformes7DEngine:
|
|
| 93 |
Image.fromarray(image_np).save(path)
|
| 94 |
|
| 95 |
def _quantize_to_multiple(self, n, m):
|
| 96 |
-
"""Helper to round n to the nearest multiple of m."""
|
| 97 |
if m == 0: return n
|
| 98 |
quantized = int(round(n / m) * m)
|
| 99 |
return m if n > 0 and quantized == 0 else quantized
|
|
@@ -130,7 +100,6 @@ class Deformes7DEngine:
|
|
| 130 |
upscaled_latent = latent_enhancer_specialist_singleton.upscale(final_latent)
|
| 131 |
pixel_tensor_out = vae_manager_singleton.decode(upscaled_latent)
|
| 132 |
|
| 133 |
-
# Save the new keyframe image
|
| 134 |
timestamp = int(time.time() * 1000)
|
| 135 |
output_path = os.path.join(self.workspace_dir, f"keyframe_{timestamp}.png")
|
| 136 |
self._save_image_from_tensor(pixel_tensor_out, output_path)
|
|
@@ -144,7 +113,6 @@ class Deformes7DEngine:
|
|
| 144 |
"""
|
| 145 |
The main interleaved rendering pipeline for Deformes7D.
|
| 146 |
"""
|
| 147 |
-
# --- INITIALIZATION ---
|
| 148 |
logger.info("--- DEFORMES 7D: INITIATING INTERLEAVED RENDERING PIPELINE ---")
|
| 149 |
run_timestamp = int(time.time())
|
| 150 |
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
|
|
@@ -152,14 +120,11 @@ class Deformes7DEngine:
|
|
| 152 |
|
| 153 |
resolution_tuple = (video_resolution, video_resolution)
|
| 154 |
|
| 155 |
-
# Lists to store the full sequence of generated artifacts
|
| 156 |
generated_keyframe_paths = []
|
| 157 |
generated_keyframe_latents = []
|
| 158 |
generated_video_fragment_paths = []
|
| 159 |
|
| 160 |
-
|
| 161 |
-
progress(0, desc="Bootstrap: Generating K0...")
|
| 162 |
-
# Keyframe 0 is just the processed initial reference
|
| 163 |
k0_path = initial_ref_paths[0]
|
| 164 |
k0_pil = Image.open(k0_path).convert("RGB")
|
| 165 |
k0_processed_pil = self._preprocess_image(k0_pil, resolution_tuple)
|
|
@@ -168,8 +133,7 @@ class Deformes7DEngine:
|
|
| 168 |
generated_keyframe_paths.append(k0_path)
|
| 169 |
generated_keyframe_latents.append(k0_latent)
|
| 170 |
|
| 171 |
-
progress(0, desc="Bootstrap: Generating K1...")
|
| 172 |
-
# Generate Keyframe 1 from Keyframe 0
|
| 173 |
prompt_k1 = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 174 |
global_prompt, "Initial scene.", storyboard[0], storyboard[1], k0_path, initial_ref_paths
|
| 175 |
)
|
|
@@ -177,29 +141,26 @@ class Deformes7DEngine:
|
|
| 177 |
generated_keyframe_paths.append(k1_path)
|
| 178 |
generated_keyframe_latents.append(k1_latent)
|
| 179 |
|
| 180 |
-
# --- MAIN RENDERING LOOP ---
|
| 181 |
story_history = ""
|
| 182 |
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 183 |
num_transitions = len(storyboard) - 1
|
|
|
|
|
|
|
| 184 |
|
| 185 |
for i in range(1, num_transitions):
|
| 186 |
progress(i / num_transitions, desc=f"Processing Act {i+1}/{num_transitions}...")
|
| 187 |
|
| 188 |
-
# --- 1. Generate the NEXT Keyframe (Look-ahead) ---
|
| 189 |
logger.info(f"--> Step 3D: Generating Keyframe K{i+1}")
|
| 190 |
kx_path = generated_keyframe_paths[i]
|
| 191 |
prompt_ky = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 192 |
-
global_prompt,
|
| 193 |
)
|
| 194 |
ky_path, ky_latent = self._generate_next_causal_keyframe(kx_path, initial_ref_paths, prompt_ky, resolution_tuple)
|
| 195 |
generated_keyframe_paths.append(ky_path)
|
| 196 |
generated_keyframe_latents.append(ky_latent)
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
kb_path = generated_keyframe_paths[i-1] # Past
|
| 201 |
-
kx_path = generated_keyframe_paths[i] # Present (Start)
|
| 202 |
-
ky_path = generated_keyframe_paths[i+1] # Future (End)
|
| 203 |
|
| 204 |
decision = deformes2d_thinker_singleton.get_cinematic_decision(
|
| 205 |
global_prompt, story_history, kb_path, kx_path, ky_path,
|
|
@@ -207,64 +168,37 @@ class Deformes7DEngine:
|
|
| 207 |
)
|
| 208 |
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 209 |
story_history += f"\n- Act {i}: {motion_prompt}"
|
| 210 |
-
|
| 211 |
-
# Prepare conditioning items for the video fragment
|
| 212 |
-
conditioning_items = []
|
| 213 |
-
if eco_latent_for_next_loop is None:
|
| 214 |
-
conditioning_items.append(LatentConditioningItem(generated_keyframe_latents[i], 0, 1.0))
|
| 215 |
-
else:
|
| 216 |
-
# This part reuses the logic from the old Deformes4D
|
| 217 |
-
# ... [Implementation of Eco/Deja-Vu conditioning here] ...
|
| 218 |
-
# For simplicity in this first draft, we'll use the direct keyframe latent
|
| 219 |
-
conditioning_items.append(LatentConditioningItem(generated_keyframe_latents[i], 0, 1.0))
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
conditioning_items
|
|
|
|
|
|
|
| 223 |
|
| 224 |
fragment_latents, _ = ltx_manager_singleton.generate_latent_fragment(
|
| 225 |
height=video_resolution, width=video_resolution,
|
| 226 |
conditioning_items_data=conditioning_items, motion_prompt=motion_prompt,
|
| 227 |
video_total_frames=self._quantize_to_multiple(int(seconds_per_fragment * 24), 8),
|
| 228 |
-
video_fps=24, **
|
| 229 |
)
|
| 230 |
|
| 231 |
-
# Post-process and save the video fragment
|
| 232 |
pixel_tensor = vae_manager_singleton.decode(fragment_latents)
|
| 233 |
-
fragment_path = os.path.join(temp_video_clips_dir, f"fragment_{i}.mp4")
|
| 234 |
self.save_video_from_tensor(pixel_tensor, fragment_path, fps=24)
|
| 235 |
generated_video_fragment_paths.append(fragment_path)
|
| 236 |
-
logger.info(f"Video Fragment V{i} saved to {fragment_path}")
|
| 237 |
-
|
| 238 |
-
# Here you would also extract the Eco and Deja-Vu from `fragment_latents` for the next loop
|
| 239 |
-
# ...
|
| 240 |
|
| 241 |
-
# --- FINAL ASSEMBLY ---
|
| 242 |
logger.info("--- Final Assembly of Video Fragments ---")
|
| 243 |
final_video_path = os.path.join(self.workspace_dir, f"movie_7D_{run_timestamp}.mp4")
|
| 244 |
-
video_encode_tool_singleton.concatenate_videos(
|
| 245 |
-
video_paths=generated_video_fragment_paths,
|
| 246 |
-
output_path=final_video_path,
|
| 247 |
-
workspace_dir=self.workspace_dir
|
| 248 |
-
)
|
| 249 |
shutil.rmtree(temp_video_clips_dir)
|
| 250 |
|
| 251 |
logger.info(f"Full movie generated at: {final_video_path}")
|
| 252 |
-
# This function would then return the path and other artifacts for post-production
|
| 253 |
return {"final_path": final_video_path, "all_keyframes": generated_keyframe_paths}
|
| 254 |
|
| 255 |
-
|
| 256 |
-
# --- POST-PRODUCTION METHODS (migrated from Deformes4D) ---
|
| 257 |
|
| 258 |
-
def
|
| 259 |
-
# This would be a more complex function that loads the video in chunks,
|
| 260 |
-
# encodes to latents, upscales, decodes, and reassembles.
|
| 261 |
-
# For this example, we assume it's a placeholder.
|
| 262 |
-
logger.info(f"Placeholder for upscaling video: {source_video_path}")
|
| 263 |
-
return source_video_path
|
| 264 |
-
|
| 265 |
-
def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress=gr.Progress()):
|
| 266 |
logger.info(f"--- POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---")
|
| 267 |
-
progress(0.1, desc=f"Preparing for HD Mastering...")
|
| 268 |
run_timestamp = int(time.time())
|
| 269 |
output_path = os.path.join(self.workspace_dir, f"{Path(source_video_path).stem}_hd.mp4")
|
| 270 |
try:
|
|
@@ -278,9 +212,8 @@ class Deformes7DEngine:
|
|
| 278 |
logger.error(f"HD Mastering failed: {e}", exc_info=True)
|
| 279 |
raise gr.Error(f"HD Mastering failed. Details: {e}")
|
| 280 |
|
| 281 |
-
def generate_audio(self, source_video_path: str, audio_prompt: str, progress
|
| 282 |
logger.info(f"--- POST-PRODUCTION: Audio Generation ---")
|
| 283 |
-
progress(0.1, desc="Preparing for audio generation...")
|
| 284 |
run_timestamp = int(time.time())
|
| 285 |
output_path = os.path.join(self.workspace_dir, f"{Path(source_video_path).stem}_audio.mp4")
|
| 286 |
try:
|
|
@@ -288,6 +221,7 @@ class Deformes7DEngine:
|
|
| 288 |
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path],
|
| 289 |
capture_output=True, text=True, check=True)
|
| 290 |
duration = float(result.stdout.strip())
|
|
|
|
| 291 |
progress(0.5, desc="Generating audio track...")
|
| 292 |
final_path = mmaudio_manager_singleton.generate_audio_for_video(
|
| 293 |
video_path=source_video_path, prompt=audio_prompt,
|
|
@@ -297,4 +231,14 @@ class Deformes7DEngine:
|
|
| 297 |
yield {"final_path": final_path}
|
| 298 |
except Exception as e:
|
| 299 |
logger.error(f"Audio generation failed: {e}", exc_info=True)
|
| 300 |
-
raise gr.Error(f"Audio generation failed. Details: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# engineers/deformes7D.py
|
|
|
|
|
|
|
|
|
|
| 2 |
#
|
| 3 |
+
# Copyright (C) 2025 Carlos Rodrigues dos Santos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
#
|
| 5 |
# Version: 3.0.0
|
| 6 |
#
|
|
|
|
| 21 |
import gc
|
| 22 |
import shutil
|
| 23 |
from pathlib import Path
|
| 24 |
+
from typing import List, Tuple, Dict
|
| 25 |
|
| 26 |
from aduc_types import LatentConditioningItem
|
| 27 |
from managers.ltx_manager import ltx_manager_singleton
|
|
|
|
| 44 |
logger.info("Deformes7D Unified Engine initialized.")
|
| 45 |
os.makedirs(self.workspace_dir, exist_ok=True)
|
| 46 |
|
| 47 |
+
# --- HELPER METHODS ---
|
| 48 |
|
| 49 |
def _preprocess_image(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
|
|
|
|
| 50 |
if image.size != target_resolution:
|
| 51 |
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
|
| 52 |
return image
|
| 53 |
|
| 54 |
def _pil_to_pixel_tensor(self, pil_image: Image.Image) -> torch.Tensor:
|
|
|
|
| 55 |
image_np = np.array(pil_image).astype(np.float32) / 255.0
|
| 56 |
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
| 57 |
return (tensor * 2.0) - 1.0
|
| 58 |
|
| 59 |
def _save_image_from_tensor(self, pixel_tensor: torch.Tensor, path: str):
|
|
|
|
| 60 |
tensor_chw = pixel_tensor.squeeze(0).squeeze(1)
|
| 61 |
tensor_hwc = tensor_chw.permute(1, 2, 0)
|
| 62 |
tensor_hwc = (tensor_hwc.clamp(-1, 1) + 1) / 2.0
|
|
|
|
| 64 |
Image.fromarray(image_np).save(path)
|
| 65 |
|
| 66 |
def _quantize_to_multiple(self, n, m):
|
|
|
|
| 67 |
if m == 0: return n
|
| 68 |
quantized = int(round(n / m) * m)
|
| 69 |
return m if n > 0 and quantized == 0 else quantized
|
|
|
|
| 100 |
upscaled_latent = latent_enhancer_specialist_singleton.upscale(final_latent)
|
| 101 |
pixel_tensor_out = vae_manager_singleton.decode(upscaled_latent)
|
| 102 |
|
|
|
|
| 103 |
timestamp = int(time.time() * 1000)
|
| 104 |
output_path = os.path.join(self.workspace_dir, f"keyframe_{timestamp}.png")
|
| 105 |
self._save_image_from_tensor(pixel_tensor_out, output_path)
|
|
|
|
| 113 |
"""
|
| 114 |
The main interleaved rendering pipeline for Deformes7D.
|
| 115 |
"""
|
|
|
|
| 116 |
logger.info("--- DEFORMES 7D: INITIATING INTERLEAVED RENDERING PIPELINE ---")
|
| 117 |
run_timestamp = int(time.time())
|
| 118 |
temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}")
|
|
|
|
| 120 |
|
| 121 |
resolution_tuple = (video_resolution, video_resolution)
|
| 122 |
|
|
|
|
| 123 |
generated_keyframe_paths = []
|
| 124 |
generated_keyframe_latents = []
|
| 125 |
generated_video_fragment_paths = []
|
| 126 |
|
| 127 |
+
progress(0, desc="Bootstrap: Processing K0...")
|
|
|
|
|
|
|
| 128 |
k0_path = initial_ref_paths[0]
|
| 129 |
k0_pil = Image.open(k0_path).convert("RGB")
|
| 130 |
k0_processed_pil = self._preprocess_image(k0_pil, resolution_tuple)
|
|
|
|
| 133 |
generated_keyframe_paths.append(k0_path)
|
| 134 |
generated_keyframe_latents.append(k0_latent)
|
| 135 |
|
| 136 |
+
progress(0.01, desc="Bootstrap: Generating K1...")
|
|
|
|
| 137 |
prompt_k1 = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 138 |
global_prompt, "Initial scene.", storyboard[0], storyboard[1], k0_path, initial_ref_paths
|
| 139 |
)
|
|
|
|
| 141 |
generated_keyframe_paths.append(k1_path)
|
| 142 |
generated_keyframe_latents.append(k1_latent)
|
| 143 |
|
|
|
|
| 144 |
story_history = ""
|
| 145 |
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
|
| 146 |
num_transitions = len(storyboard) - 1
|
| 147 |
+
|
| 148 |
+
base_4d_ltx_params = {"rescaling_scale": 0.15, "image_cond_noise_scale": 0.00, **ltx_params}
|
| 149 |
|
| 150 |
for i in range(1, num_transitions):
|
| 151 |
progress(i / num_transitions, desc=f"Processing Act {i+1}/{num_transitions}...")
|
| 152 |
|
|
|
|
| 153 |
logger.info(f"--> Step 3D: Generating Keyframe K{i+1}")
|
| 154 |
kx_path = generated_keyframe_paths[i]
|
| 155 |
prompt_ky = deformes2d_thinker_singleton.get_anticipatory_keyframe_prompt(
|
| 156 |
+
global_prompt, story_history, storyboard[i], storyboard[i+1], kx_path, initial_ref_paths
|
| 157 |
)
|
| 158 |
ky_path, ky_latent = self._generate_next_causal_keyframe(kx_path, initial_ref_paths, prompt_ky, resolution_tuple)
|
| 159 |
generated_keyframe_paths.append(ky_path)
|
| 160 |
generated_keyframe_latents.append(ky_latent)
|
| 161 |
|
| 162 |
+
logger.info(f"--> Step 4D: Generating Video Fragment V{i-1}")
|
| 163 |
+
kb_path, kx_path, ky_path = generated_keyframe_paths[i-1], generated_keyframe_paths[i], generated_keyframe_paths[i+1]
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
decision = deformes2d_thinker_singleton.get_cinematic_decision(
|
| 166 |
global_prompt, story_history, kb_path, kx_path, ky_path,
|
|
|
|
| 168 |
)
|
| 169 |
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
|
| 170 |
story_history += f"\n- Act {i}: {motion_prompt}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
# This is a simplified version of the Deformes4D conditioning logic
|
| 173 |
+
conditioning_items = [LatentConditioningItem(generated_keyframe_latents[i], 0, 1.0)]
|
| 174 |
+
if transition_type != "cut":
|
| 175 |
+
conditioning_items.append(LatentConditioningItem(ky_latent, -1, dest_strength))
|
| 176 |
|
| 177 |
fragment_latents, _ = ltx_manager_singleton.generate_latent_fragment(
|
| 178 |
height=video_resolution, width=video_resolution,
|
| 179 |
conditioning_items_data=conditioning_items, motion_prompt=motion_prompt,
|
| 180 |
video_total_frames=self._quantize_to_multiple(int(seconds_per_fragment * 24), 8),
|
| 181 |
+
video_fps=24, **base_4d_ltx_params
|
| 182 |
)
|
| 183 |
|
|
|
|
| 184 |
pixel_tensor = vae_manager_singleton.decode(fragment_latents)
|
| 185 |
+
fragment_path = os.path.join(temp_video_clips_dir, f"fragment_{i-1}.mp4")
|
| 186 |
self.save_video_from_tensor(pixel_tensor, fragment_path, fps=24)
|
| 187 |
generated_video_fragment_paths.append(fragment_path)
|
| 188 |
+
logger.info(f"Video Fragment V{i-1} saved to {fragment_path}")
|
|
|
|
|
|
|
|
|
|
| 189 |
|
|
|
|
| 190 |
logger.info("--- Final Assembly of Video Fragments ---")
|
| 191 |
final_video_path = os.path.join(self.workspace_dir, f"movie_7D_{run_timestamp}.mp4")
|
| 192 |
+
video_encode_tool_singleton.concatenate_videos(generated_video_fragment_paths, final_video_path, self.workspace_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
shutil.rmtree(temp_video_clips_dir)
|
| 194 |
|
| 195 |
logger.info(f"Full movie generated at: {final_video_path}")
|
|
|
|
| 196 |
return {"final_path": final_video_path, "all_keyframes": generated_keyframe_paths}
|
| 197 |
|
| 198 |
+
# --- POST-PRODUCTION METHODS ---
|
|
|
|
| 199 |
|
| 200 |
+
def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress: gr.Progress):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
logger.info(f"--- POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---")
|
|
|
|
| 202 |
run_timestamp = int(time.time())
|
| 203 |
output_path = os.path.join(self.workspace_dir, f"{Path(source_video_path).stem}_hd.mp4")
|
| 204 |
try:
|
|
|
|
| 212 |
logger.error(f"HD Mastering failed: {e}", exc_info=True)
|
| 213 |
raise gr.Error(f"HD Mastering failed. Details: {e}")
|
| 214 |
|
| 215 |
+
def generate_audio(self, source_video_path: str, audio_prompt: str, progress: gr.Progress):
|
| 216 |
logger.info(f"--- POST-PRODUCTION: Audio Generation ---")
|
|
|
|
| 217 |
run_timestamp = int(time.time())
|
| 218 |
output_path = os.path.join(self.workspace_dir, f"{Path(source_video_path).stem}_audio.mp4")
|
| 219 |
try:
|
|
|
|
| 221 |
["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path],
|
| 222 |
capture_output=True, text=True, check=True)
|
| 223 |
duration = float(result.stdout.strip())
|
| 224 |
+
logger.info(f"Source video duration: {duration:.2f} seconds.")
|
| 225 |
progress(0.5, desc="Generating audio track...")
|
| 226 |
final_path = mmaudio_manager_singleton.generate_audio_for_video(
|
| 227 |
video_path=source_video_path, prompt=audio_prompt,
|
|
|
|
| 231 |
yield {"final_path": final_path}
|
| 232 |
except Exception as e:
|
| 233 |
logger.error(f"Audio generation failed: {e}", exc_info=True)
|
| 234 |
+
raise gr.Error(f"Audio generation failed. Details: {e}")
|
| 235 |
+
|
| 236 |
+
# --- Singleton Instantiation ---
|
| 237 |
+
try:
|
| 238 |
+
with open("config.yaml", 'r') as f:
|
| 239 |
+
config = yaml.safe_load(f)
|
| 240 |
+
WORKSPACE_DIR = config['application']['workspace_dir']
|
| 241 |
+
deformes7d_engine_singleton = Deformes7DEngine(workspace_dir=WORKSPACE_DIR)
|
| 242 |
+
except Exception as e:
|
| 243 |
+
logger.error(f"Could not initialize Deformes7DEngine: {e}", exc_info=True)
|
| 244 |
+
deformes7d_engine_singleton = None
|