# managers/seedvr_manager.py # AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos # # Contato: # Carlos Rodrigues dos Santos # carlex22@gmail.com # Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025 # # Repositórios e Projetos Relacionados: # GitHub: https://github.com/carlex22/Aduc-sdr # # PENDING PATENT NOTICE: Please see NOTICE.md. # # Version: 2.3.0 # # This file implements the SeedVrManager, which uses the SeedVR model for # video super-resolution. It is self-contained, automatically cloning its own # dependencies from the official SeedVR repository. import torch import os import gc import logging import sys import subprocess from pathlib import Path from urllib.parse import urlparse from torch.hub import download_url_to_file import gradio as gr import mediapy from einops import rearrange # Internalized utility for color correction, ensuring stability. from tools.tensor_utils import wavelet_reconstruction logger = logging.getLogger(__name__) # --- Dependency Management --- DEPS_DIR = Path("./deps") SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR" SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git" def setup_seedvr_dependencies(): """ Ensures the SeedVR repository is cloned and available in the sys.path. This function is run once when the module is first imported. """ if not SEEDVR_REPO_DIR.exists(): logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...") try: DEPS_DIR.mkdir(exist_ok=True) # Use --depth 1 for a shallow clone to save space and time subprocess.run( ["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], check=True, capture_output=True, text=True ) logger.info("SeedVR repository cloned successfully.") except subprocess.CalledProcessError as e: logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}") raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.") else: logger.info("Found local SeedVR repository.") # Add the cloned repo to Python's path to allow direct imports if str(SEEDVR_REPO_DIR.resolve()) not in sys.path: sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve())) logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.") # --- Execute dependency setup immediately upon module import --- setup_seedvr_dependencies() # --- Now that the path is set, we can safely import from the cloned repo --- from projects.video_diffusion_sr.infer import VideoDiffusionInfer from common.config import load_config from common.seed import set_seed from data.image.transforms.divisible_crop import DivisibleCrop from data.image.transforms.na_resize import NaResize from data.video.transforms.rearrange import Rearrange from torchvision.transforms import Compose, Lambda, Normalize from torchvision.io.video import read_video from omegaconf import OmegaConf def _load_file_from_url(url, model_dir='./', file_name=None): """Helper function to download files from a URL to a local directory.""" os.makedirs(model_dir, exist_ok=True) filename = file_name or os.path.basename(urlparse(url).path) cached_file = os.path.abspath(os.path.join(model_dir, filename)) if not os.path.exists(cached_file): logger.info(f'Downloading: "{url}" to {cached_file}') download_url_to_file(url, cached_file, hash_prefix=None, progress=True) return cached_file class SeedVrManager: """ Manages the SeedVR model for HD Mastering tasks. """ def __init__(self, workspace_dir="deformes_workspace"): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.runner = None self.workspace_dir = workspace_dir self.is_initialized = False logger.info("SeedVrManager initialized. Model will be loaded on demand.") def _download_models(self): """Downloads the necessary checkpoints for SeedVR2.""" logger.info("Verifying and downloading SeedVR2 models...") ckpt_dir = SEEDVR_REPO_DIR / 'ckpts' ckpt_dir.mkdir(exist_ok=True) pretrain_model_urls = { 'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth', 'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth', 'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth', 'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt', 'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt' } for key, url in pretrain_model_urls.items(): _load_file_from_url(url=url, model_dir=str(ckpt_dir)) logger.info("SeedVR2 models downloaded successfully.") def _initialize_runner(self, model_version: str): """Loads and configures the SeedVR model on demand based on the selected version.""" if self.runner is not None: return self._download_models() logger.info(f"Initializing SeedVR2 {model_version} runner...") if model_version == '3B': config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml' checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth' elif model_version == '7B': config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml' checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth' else: raise ValueError(f"Unsupported SeedVR model version: {model_version}") config = load_config(str(config_path)) self.runner = VideoDiffusionInfer(config) OmegaConf.set_readonly(self.runner.config, False) self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path)) self.runner.configure_vae_model() if hasattr(self.runner.vae, "set_memory_limit"): self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit) self.is_initialized = True logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.") def _unload_runner(self): """Removes the runner from VRAM to free resources.""" if self.runner is not None: del self.runner; self.runner = None gc.collect(); torch.cuda.empty_cache() self.is_initialized = False logger.info("SeedVR2 runner unloaded from VRAM.") def process_video(self, input_video_path: str, output_video_path: str, prompt: str, model_version: str = '3B', steps: int = 50, seed: int = 666, progress: gr.Progress = None) -> str: """Applies HD enhancement to a video using the SeedVR logic.""" try: self._initialize_runner(model_version) set_seed(seed, same_across_ranks=True) self.runner.config.diffusion.timesteps.sampling.steps = steps self.runner.configure_diffusion() video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0 res_h, res_w = video_tensor.shape[-2:] video_transform = Compose([ NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False), Lambda(lambda x: torch.clamp(x, 0.0, 1.0)), DivisibleCrop((16, 16)), Normalize(0.5, 0.5), Rearrange("t c h w -> c t h w"), ]) cond_latents = [video_transform(video_tensor.to(self.device))] input_videos = cond_latents self.runner.dit.to("cpu") self.runner.vae.to(self.device) cond_latents = self.runner.vae_encode(cond_latents) self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache() self.runner.dit.to(self.device) pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt' neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt' text_pos_embeds = torch.load(pos_emb_path).to(self.device) text_neg_embeds = torch.load(neg_emb_path).to(self.device) text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]} noises = [torch.randn_like(latent) for latent in cond_latents] conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)] with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True): video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict) self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache() self.runner.vae.to(self.device) samples = self.runner.vae_decode(video_tensors) final_sample = samples[0] input_video_sample = input_videos[0] if final_sample.shape[1] < input_video_sample.shape[1]: input_video_sample = input_video_sample[:, :final_sample.shape[1]] final_sample = wavelet_reconstruction( rearrange(final_sample, "c t h w -> t c h w"), rearrange(input_video_sample, "c t h w -> t c h w") ) final_sample = rearrange(final_sample, "t c h w -> t h w c") final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round() final_sample_np = final_sample.to(torch.uint8).cpu().numpy() mediapy.write_video(output_video_path, final_sample_np, fps=24) logger.info(f"HD Mastered video saved to: {output_video_path}") return output_video_path finally: self._unload_runner() # --- Singleton Instance --- seedvr_manager_singleton = SeedVrManager()