File size: 9,799 Bytes
9f65008
0fd259e
9f65008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd259e
9f65008
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd259e
9f65008
 
 
 
0fd259e
9f65008
 
 
 
0fd259e
9f65008
 
 
 
0fd259e
 
9f65008
 
 
0fd259e
9f65008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd259e
9f65008
 
 
 
70b72ca
9f65008
 
 
 
 
 
 
 
 
 
 
 
70b72ca
9f65008
 
 
 
70b72ca
9f65008
 
70b72ca
9f65008
 
 
70b72ca
9f65008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# app.py (VERSÃO FINAL E CORRIGIDA)

import spaces
import subprocess
import os
import torch
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
from tqdm import tqdm
import gc
import uuid
import mimetypes
import torchvision.transforms as T
from PIL import Image
from pathlib import Path
import gradio as gr

# --- Módulos do SeedVR (agora que estão no ambiente, podemos importá-los) ---
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from common.distributed import init_torch
from common.distributed.advanced import init_sequence_parallel
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.distributed.ops import sync_data
from common.seed import set_seed
from common.partition import partition_by_size

# --- CONFIGURAÇÃO DO AMBIENTE (REMOVIDA) ---
# REMOVIDO: A instalação do flash-attn e apex já é feita no Dockerfile.
# REMOVIDO: O download dos checkpoints do modelo já é feito no Dockerfile.
# REMOVIDO: A configuração de torch.distributed é tratada de forma mais simples.

# Verificação para garantir que estamos no diretório certo
print(f"Diretório de trabalho atual: {os.getcwd()}")
if not os.path.exists('./projects'):
    print("AVISO: O script parece não estar rodando de dentro do diretório /app/SeedVR. Verifique o WORKDIR no Dockerfile.")

# Checa se a correção de cor está disponível
use_colorfix = os.path.exists("./projects/video_diffusion_sr/color_fix.py")
if not use_colorfix:
    print('Atenção: Correção de cor (color_fix.py) não disponível!')


def configure_sequence_parallel(sp_size):
    if sp_size > 1:
        init_sequence_parallel(sp_size)

# O decorador @spaces.GPU garante que a função rode na GPU e gerencia a duração
@spaces.GPU(duration=120)
def configure_runner(sp_size):
    config_path = os.path.join('./configs_3b', 'main.yaml')
    config = load_config(config_path)
    runner = VideoDiffusionInfer(config)
    OmegaConf.set_readonly(runner.config, False)
    
    # Inicializa o torch para um único processo
    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["MASTER_PORT"] = "12355"
    if "RANK" not in os.environ:
        os.environ["RANK"] = "0"
    if "WORLD_SIZE" not in os.environ:
        os.environ["WORLD_SIZE"] = "1"
    
    init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
    configure_sequence_parallel(sp_size)
    
    # Os checkpoints estão no diretório ckpts, conforme baixado pelo Dockerfile
    runner.configure_dit_model(device="cuda", checkpoint='./ckpts/seedvr2_ema_3b.pth')
    runner.configure_vae_model(checkpoint_path='./ckpts/ema_vae.pth')
    
    if hasattr(runner.vae, "set_memory_limit"):
        runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
    return runner

@spaces.GPU(duration=120)
def generation_step(runner, text_embeds_dict, cond_latents):
    def _move_to_cuda(x):
        return [i.to(torch.device("cuda")) for i in x]

    noises = [torch.randn_like(latent) for latent in cond_latents]
    aug_noises = [torch.randn_like(latent) for latent in cond_latents]
    noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
    noises, aug_noises, cond_latents = list(map(_move_to_cuda, (noises, aug_noises, cond_latents)))
    
    cond_noise_scale = 0.1
    def _add_noise(x, aug_noise):
        t = (torch.tensor([1000.0], device=torch.device("cuda")) * cond_noise_scale)
        shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None]
        t = runner.timestep_transform(t, shape)
        x = runner.schedule.forward(x, aug_noise, t)
        return x

    conditions = [
        runner.get_condition(noise, task="sr", latent_blur=_add_noise(latent_blur, aug_noise))
        for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
    ]

    with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
        video_tensors = runner.inference(noises=noises, conditions=conditions, dit_offload=False, **text_embeds_dict)

    samples = [rearrange(video, "c t h w -> t c h w") for video in video_tensors]
    del video_tensors
    return samples

@spaces.GPU(duration=120)
def generation_loop(video_path, seed, fps_out, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=720, res_w=1280, sp_size=1):
    # O Gradio passa o caminho do arquivo temporário
    if video_path is None:
        raise gr.Error("Por favor, faça o upload de um arquivo de vídeo ou imagem.")

    runner = configure_runner(sp_size)

    def _extract_text_embeds():
        text_pos_embeds = torch.load('pos_emb.pt')
        text_neg_embeds = torch.load('neg_emb.pt')
        return [{"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}]

    def cut_videos(videos, sp_size):
        if videos.size(1) > 121: videos = videos[:, :121]
        t = videos.size(1)
        if t <= 4 * sp_size:
            padding = torch.cat([videos[:, -1].unsqueeze(1)] * (4 * sp_size - t + 1), dim=1)
            return torch.cat([videos, padding], dim=1)
        if (t - 1) % (4 * sp_size) == 0: return videos
        padding = torch.cat([videos[:, -1].unsqueeze(1)] * (4 * sp_size - ((t - 1) % (4 * sp_size))), dim=1)
        return torch.cat([videos, padding], dim=1)

    runner.config.diffusion.cfg.scale = cfg_scale
    runner.config.diffusion.cfg.rescale = cfg_rescale
    runner.config.diffusion.timesteps.sampling.steps = sample_steps
    runner.configure_diffusion()

    set_seed(seed % (2**32), same_across_ranks=True)
    os.makedirs('output/', exist_ok=True)

    original_videos_local = [[os.path.basename(video_path)]]
    positive_prompts_embeds = _extract_text_embeds()

    video_transform = Compose([
        NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
        Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
        DivisibleCrop((16, 16)),
        Normalize(0.5, 0.5),
        Rearrange("t c h w -> c t h w"),
    ])

    for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
        cond_latents = []
        media_type, _ = mimetypes.guess_type(video_path)
        is_image = media_type and media_type.startswith("image")
        is_video = media_type and media_type.startswith("video")

        if is_video:
            video_frames = read_video(video_path, output_format="TCHW")[0] / 255.0
            if video_frames.size(0) > 121: video_frames = video_frames[:121]
            output_filename = str(uuid.uuid4()) + '.mp4'
        elif is_image:
            img = Image.open(video_path).convert("RGB")
            video_frames = T.ToTensor()(img).unsqueeze(0)
            output_filename = str(uuid.uuid4()) + '.png'
        else:
            raise gr.Error("Formato de arquivo não suportado. Use vídeo ou imagem.")
        
        output_dir = os.path.join('output', output_filename)
        cond_latents.append(video_transform(video_frames.to(torch.device("cuda"))))

        ori_lengths = [v.size(1) for v in cond_latents]
        input_videos = cond_latents
        if is_video: cond_latents = [cut_videos(v, sp_size) for v in cond_latents]
        
        cond_latents = runner.vae_encode(cond_latents)
        
        for i, emb in enumerate(text_embeds["texts_pos"]): text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
        for i, emb in enumerate(text_embeds["texts_neg"]): text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))

        samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
        del cond_latents

        for path, input_vid, sample, ori_length in zip(videos, input_videos, samples, ori_lengths):
            if ori_length < sample.shape[0]: sample = sample[:ori_length]
            input_vid = rearrange(input_vid, "c t h w -> t c h w")
            if use_colorfix: sample = wavelet_reconstruction(sample.cpu(), input_vid[:sample.size(0)].cpu())
            else: sample = sample.cpu()
            
            sample = rearrange(sample, "t c h w -> t h w c")
            sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round().to(torch.uint8).numpy()

            if is_image:
                mediapy.write_image(output_dir, sample[0])
            else:
                mediapy.write_video(output_dir, sample, fps=fps_out)

        gc.collect()
        torch.cuda.empty_cache()

        # Retorna os valores para os componentes corretos da UI
        if is_image:
            return output_dir, None, output_dir
        else:
            return None, output_dir, output_dir

# --- Interface Gradio ---
with gr.Blocks(title="SeedVR2: One-Step Video Restoration") as demo:
    gr.HTML(...) # Mantido como no original

    with gr.Row():
        # CORRIGIDO: gr.File para gr.Video, que passa um 'filepath' por padrão
        input_file = gr.Video(label="Upload image or video")
        seed = gr.Number(label="Seeds", value=666)
        fps = gr.Number(label="fps", value=24)

    with gr.Row():
        output_image = gr.Image(label="Output_Image")
        output_video = gr.Video(label="Output_Video")
        download_link = gr.File(label="Download the output")

    run_button = gr.Button("Run")
    run_button.click(
        fn=generation_loop, 
        inputs=[input_file, seed, fps], 
        outputs=[output_image, output_video, download_link]
    )

    gr.Examples(...) # Mantido como no original
    gr.HTML(...) # Mantido como no original

demo.queue(max_size=10)
demo.launch()