|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple, Union |
|
|
import torch |
|
|
from einops import rearrange |
|
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
|
from common.cache import Cache |
|
|
from common.distributed.ops import gather_heads_scatter_seq, gather_seq_scatter_heads_qkv |
|
|
|
|
|
from .. import na |
|
|
from ..attention import FlashAttentionVarlen |
|
|
from ..blocks.mmdit_window_block import MMWindowAttention, MMWindowTransformerBlock |
|
|
from ..mm import MMArg |
|
|
from ..modulation import ada_layer_type |
|
|
from ..normalization import norm_layer_type |
|
|
from ..rope import NaRotaryEmbedding3d |
|
|
from ..window import get_window_op |
|
|
|
|
|
|
|
|
class NaSwinAttention(MMWindowAttention): |
|
|
def __init__( |
|
|
self, |
|
|
vid_dim: int, |
|
|
txt_dim: int, |
|
|
heads: int, |
|
|
head_dim: int, |
|
|
qk_bias: bool, |
|
|
qk_rope: bool, |
|
|
qk_norm: norm_layer_type, |
|
|
qk_norm_eps: float, |
|
|
window: Union[int, Tuple[int, int, int]], |
|
|
window_method: str, |
|
|
shared_qkv: bool, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__( |
|
|
vid_dim=vid_dim, |
|
|
txt_dim=txt_dim, |
|
|
heads=heads, |
|
|
head_dim=head_dim, |
|
|
qk_bias=qk_bias, |
|
|
qk_rope=qk_rope, |
|
|
qk_norm=qk_norm, |
|
|
qk_norm_eps=qk_norm_eps, |
|
|
window=window, |
|
|
window_method=window_method, |
|
|
shared_qkv=shared_qkv, |
|
|
) |
|
|
self.rope = NaRotaryEmbedding3d(dim=head_dim // 2) if qk_rope else None |
|
|
self.attn = FlashAttentionVarlen() |
|
|
self.window_op = get_window_op(window_method) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
vid: torch.FloatTensor, |
|
|
txt: torch.FloatTensor, |
|
|
vid_shape: torch.LongTensor, |
|
|
txt_shape: torch.LongTensor, |
|
|
cache: Cache, |
|
|
) -> Tuple[ |
|
|
torch.FloatTensor, |
|
|
torch.FloatTensor, |
|
|
]: |
|
|
|
|
|
vid_qkv, txt_qkv = self.proj_qkv(vid, txt) |
|
|
vid_qkv = gather_seq_scatter_heads_qkv( |
|
|
vid_qkv, |
|
|
seq_dim=0, |
|
|
qkv_shape=vid_shape, |
|
|
cache=cache.namespace("vid"), |
|
|
) |
|
|
txt_qkv = gather_seq_scatter_heads_qkv( |
|
|
txt_qkv, |
|
|
seq_dim=0, |
|
|
qkv_shape=txt_shape, |
|
|
cache=cache.namespace("txt"), |
|
|
) |
|
|
|
|
|
|
|
|
cache_win = cache.namespace(f"{self.window_method}_{self.window}_sd3") |
|
|
|
|
|
def make_window(x: torch.Tensor): |
|
|
t, h, w, _ = x.shape |
|
|
window_slices = self.window_op((t, h, w), self.window) |
|
|
return [x[st, sh, sw] for (st, sh, sw) in window_slices] |
|
|
|
|
|
window_partition, window_reverse, window_shape, window_count = cache_win( |
|
|
"win_transform", |
|
|
lambda: na.window_idx(vid_shape, make_window), |
|
|
) |
|
|
vid_qkv_win = window_partition(vid_qkv) |
|
|
|
|
|
vid_qkv_win = rearrange(vid_qkv_win, "l (o h d) -> l o h d", o=3, d=self.head_dim) |
|
|
txt_qkv = rearrange(txt_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim) |
|
|
|
|
|
vid_q, vid_k, vid_v = vid_qkv_win.unbind(1) |
|
|
txt_q, txt_k, txt_v = txt_qkv.unbind(1) |
|
|
|
|
|
vid_q, txt_q = self.norm_q(vid_q, txt_q) |
|
|
vid_k, txt_k = self.norm_k(vid_k, txt_k) |
|
|
|
|
|
txt_len = cache("txt_len", lambda: txt_shape.prod(-1)) |
|
|
|
|
|
vid_len_win = cache_win("vid_len", lambda: window_shape.prod(-1)) |
|
|
txt_len_win = cache_win("txt_len", lambda: txt_len.repeat_interleave(window_count)) |
|
|
all_len_win = cache_win("all_len", lambda: vid_len_win + txt_len_win) |
|
|
concat_win, unconcat_win = cache_win( |
|
|
"mm_pnp", lambda: na.repeat_concat_idx(vid_len_win, txt_len, window_count) |
|
|
) |
|
|
|
|
|
|
|
|
if self.rope: |
|
|
vid_q, vid_k = self.rope(vid_q, vid_k, window_shape, cache_win) |
|
|
|
|
|
out = self.attn( |
|
|
q=concat_win(vid_q, txt_q).bfloat16(), |
|
|
k=concat_win(vid_k, txt_k).bfloat16(), |
|
|
v=concat_win(vid_v, txt_v).bfloat16(), |
|
|
cu_seqlens_q=cache_win( |
|
|
"vid_seqlens_q", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int() |
|
|
), |
|
|
cu_seqlens_k=cache_win( |
|
|
"vid_seqlens_k", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int() |
|
|
), |
|
|
max_seqlen_q=cache_win("vid_max_seqlen_q", lambda: all_len_win.max().item()), |
|
|
max_seqlen_k=cache_win("vid_max_seqlen_k", lambda: all_len_win.max().item()), |
|
|
).type_as(vid_q) |
|
|
|
|
|
|
|
|
vid_out, txt_out = unconcat_win(out) |
|
|
|
|
|
vid_out = rearrange(vid_out, "l h d -> l (h d)") |
|
|
txt_out = rearrange(txt_out, "l h d -> l (h d)") |
|
|
vid_out = window_reverse(vid_out) |
|
|
|
|
|
vid_out = gather_heads_scatter_seq(vid_out, head_dim=1, seq_dim=0) |
|
|
txt_out = gather_heads_scatter_seq(txt_out, head_dim=1, seq_dim=0) |
|
|
|
|
|
vid_out, txt_out = self.proj_out(vid_out, txt_out) |
|
|
|
|
|
return vid_out, txt_out |
|
|
|
|
|
|
|
|
class NaMMSRTransformerBlock(MMWindowTransformerBlock): |
|
|
def __init__( |
|
|
self, |
|
|
*, |
|
|
vid_dim: int, |
|
|
txt_dim: int, |
|
|
emb_dim: int, |
|
|
heads: int, |
|
|
head_dim: int, |
|
|
expand_ratio: int, |
|
|
norm: norm_layer_type, |
|
|
norm_eps: float, |
|
|
ada: ada_layer_type, |
|
|
qk_bias: bool, |
|
|
qk_rope: bool, |
|
|
qk_norm: norm_layer_type, |
|
|
shared_qkv: bool, |
|
|
shared_mlp: bool, |
|
|
mlp_type: str, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__( |
|
|
vid_dim=vid_dim, |
|
|
txt_dim=txt_dim, |
|
|
emb_dim=emb_dim, |
|
|
heads=heads, |
|
|
head_dim=head_dim, |
|
|
expand_ratio=expand_ratio, |
|
|
norm=norm, |
|
|
norm_eps=norm_eps, |
|
|
ada=ada, |
|
|
qk_bias=qk_bias, |
|
|
qk_rope=qk_rope, |
|
|
qk_norm=qk_norm, |
|
|
shared_qkv=shared_qkv, |
|
|
shared_mlp=shared_mlp, |
|
|
mlp_type=mlp_type, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
self.attn = NaSwinAttention( |
|
|
vid_dim=vid_dim, |
|
|
txt_dim=txt_dim, |
|
|
heads=heads, |
|
|
head_dim=head_dim, |
|
|
qk_bias=qk_bias, |
|
|
qk_rope=qk_rope, |
|
|
qk_norm=qk_norm, |
|
|
qk_norm_eps=norm_eps, |
|
|
shared_qkv=shared_qkv, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
vid: torch.FloatTensor, |
|
|
txt: torch.FloatTensor, |
|
|
vid_shape: torch.LongTensor, |
|
|
txt_shape: torch.LongTensor, |
|
|
emb: torch.FloatTensor, |
|
|
cache: Cache, |
|
|
) -> Tuple[ |
|
|
torch.FloatTensor, |
|
|
torch.FloatTensor, |
|
|
torch.LongTensor, |
|
|
torch.LongTensor, |
|
|
]: |
|
|
hid_len = MMArg( |
|
|
cache("vid_len", lambda: vid_shape.prod(-1)), |
|
|
cache("txt_len", lambda: txt_shape.prod(-1)), |
|
|
) |
|
|
ada_kwargs = { |
|
|
"emb": emb, |
|
|
"hid_len": hid_len, |
|
|
"cache": cache, |
|
|
"branch_tag": MMArg("vid", "txt"), |
|
|
} |
|
|
|
|
|
vid_attn, txt_attn = self.attn_norm(vid, txt) |
|
|
vid_attn, txt_attn = self.ada(vid_attn, txt_attn, layer="attn", mode="in", **ada_kwargs) |
|
|
vid_attn, txt_attn = self.attn(vid_attn, txt_attn, vid_shape, txt_shape, cache) |
|
|
vid_attn, txt_attn = self.ada(vid_attn, txt_attn, layer="attn", mode="out", **ada_kwargs) |
|
|
vid_attn, txt_attn = (vid_attn + vid), (txt_attn + txt) |
|
|
|
|
|
vid_mlp, txt_mlp = self.mlp_norm(vid_attn, txt_attn) |
|
|
vid_mlp, txt_mlp = self.ada(vid_mlp, txt_mlp, layer="mlp", mode="in", **ada_kwargs) |
|
|
vid_mlp, txt_mlp = self.mlp(vid_mlp, txt_mlp) |
|
|
vid_mlp, txt_mlp = self.ada(vid_mlp, txt_mlp, layer="mlp", mode="out", **ada_kwargs) |
|
|
vid_mlp, txt_mlp = (vid_mlp + vid_attn), (txt_mlp + txt_attn) |
|
|
|
|
|
return vid_mlp, txt_mlp, vid_shape, txt_shape |
|
|
|