Carlexxx
commited on
Commit
·
c3bf719
1
Parent(s):
a45010b
feat: Implement self-contained specialist managers
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- common/__init__.py +0 -0
- common/cache.py +47 -0
- common/config.py +110 -0
- common/decorators.py +147 -0
- common/diffusion/__init__.py +56 -0
- common/diffusion/config.py +74 -0
- common/diffusion/samplers/base.py +108 -0
- common/diffusion/samplers/euler.py +89 -0
- common/diffusion/schedules/base.py +131 -0
- common/diffusion/schedules/lerp.py +55 -0
- common/diffusion/timesteps/base.py +72 -0
- common/diffusion/timesteps/sampling/trailing.py +49 -0
- common/diffusion/types.py +59 -0
- common/diffusion/utils.py +84 -0
- common/distributed/__init__.py +37 -0
- common/distributed/advanced.py +208 -0
- common/distributed/basic.py +84 -0
- common/distributed/meta_init_utils.py +41 -0
- common/distributed/ops.py +494 -0
- common/logger.py +44 -0
- common/partition.py +59 -0
- common/seed.py +30 -0
- configs_3b/main.yaml +88 -0
- configs_7b/main.yaml +85 -0
- data/image/transforms/area_resize.py +135 -0
- data/image/transforms/divisible_crop.py +40 -0
- data/image/transforms/na_resize.py +50 -0
- data/image/transforms/side_resize.py +54 -0
- data/video/transforms/rearrange.py +24 -0
- models/dit/attention.py +46 -0
- models/dit/blocks/__init__.py +25 -0
- models/dit/blocks/mmdit_window_block.py +233 -0
- models/dit/embedding.py +62 -0
- models/dit/mlp.py +62 -0
- models/dit/mm.py +67 -0
- models/dit/modulation.py +97 -0
- models/dit/na.py +241 -0
- models/dit/nablocks/__init__.py +25 -0
- models/dit/nablocks/mmsr_block.py +248 -0
- models/dit/nadit.py +350 -0
- models/dit/normalization.py +63 -0
- models/dit/patch.py +112 -0
- models/dit/rope.py +101 -0
- models/dit/window.py +83 -0
- models/dit_v2/attention.py +46 -0
- models/dit_v2/embedding.py +62 -0
- models/dit_v2/mlp.py +62 -0
- models/dit_v2/mm.py +74 -0
- models/dit_v2/modulation.py +102 -0
- models/dit_v2/na.py +241 -0
common/__init__.py
ADDED
|
File without changes
|
common/cache.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Callable
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Cache:
|
| 19 |
+
"""Caching reusable args for faster inference"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, disable=False, prefix="", cache=None):
|
| 22 |
+
self.cache = cache if cache is not None else {}
|
| 23 |
+
self.disable = disable
|
| 24 |
+
self.prefix = prefix
|
| 25 |
+
|
| 26 |
+
def __call__(self, key: str, fn: Callable):
|
| 27 |
+
if self.disable:
|
| 28 |
+
return fn()
|
| 29 |
+
|
| 30 |
+
key = self.prefix + key
|
| 31 |
+
try:
|
| 32 |
+
result = self.cache[key]
|
| 33 |
+
except KeyError:
|
| 34 |
+
result = fn()
|
| 35 |
+
self.cache[key] = result
|
| 36 |
+
return result
|
| 37 |
+
|
| 38 |
+
def namespace(self, namespace: str):
|
| 39 |
+
return Cache(
|
| 40 |
+
disable=self.disable,
|
| 41 |
+
prefix=self.prefix + namespace + ".",
|
| 42 |
+
cache=self.cache,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
def get(self, key: str):
|
| 46 |
+
key = self.prefix + key
|
| 47 |
+
return self.cache[key]
|
common/config.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Configuration utility functions
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import importlib
|
| 20 |
+
from typing import Any, Callable, List, Union
|
| 21 |
+
from omegaconf import DictConfig, ListConfig, OmegaConf
|
| 22 |
+
|
| 23 |
+
OmegaConf.register_new_resolver("eval", eval)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_config(path: str, argv: List[str] = None) -> Union[DictConfig, ListConfig]:
|
| 27 |
+
"""
|
| 28 |
+
Load a configuration. Will resolve inheritance.
|
| 29 |
+
"""
|
| 30 |
+
config = OmegaConf.load(path)
|
| 31 |
+
if argv is not None:
|
| 32 |
+
config_argv = OmegaConf.from_dotlist(argv)
|
| 33 |
+
config = OmegaConf.merge(config, config_argv)
|
| 34 |
+
config = resolve_recursive(config, resolve_inheritance)
|
| 35 |
+
return config
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def resolve_recursive(
|
| 39 |
+
config: Any,
|
| 40 |
+
resolver: Callable[[Union[DictConfig, ListConfig]], Union[DictConfig, ListConfig]],
|
| 41 |
+
) -> Any:
|
| 42 |
+
config = resolver(config)
|
| 43 |
+
if isinstance(config, DictConfig):
|
| 44 |
+
for k in config.keys():
|
| 45 |
+
v = config.get(k)
|
| 46 |
+
if isinstance(v, (DictConfig, ListConfig)):
|
| 47 |
+
config[k] = resolve_recursive(v, resolver)
|
| 48 |
+
if isinstance(config, ListConfig):
|
| 49 |
+
for i in range(len(config)):
|
| 50 |
+
v = config.get(i)
|
| 51 |
+
if isinstance(v, (DictConfig, ListConfig)):
|
| 52 |
+
config[i] = resolve_recursive(v, resolver)
|
| 53 |
+
return config
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def resolve_inheritance(config: Union[DictConfig, ListConfig]) -> Any:
|
| 57 |
+
"""
|
| 58 |
+
Recursively resolve inheritance if the config contains:
|
| 59 |
+
__inherit__: path/to/parent.yaml or a ListConfig of such paths.
|
| 60 |
+
"""
|
| 61 |
+
if isinstance(config, DictConfig):
|
| 62 |
+
inherit = config.pop("__inherit__", None)
|
| 63 |
+
|
| 64 |
+
if inherit:
|
| 65 |
+
inherit_list = inherit if isinstance(inherit, ListConfig) else [inherit]
|
| 66 |
+
|
| 67 |
+
parent_config = None
|
| 68 |
+
for parent_path in inherit_list:
|
| 69 |
+
assert isinstance(parent_path, str)
|
| 70 |
+
parent_config = (
|
| 71 |
+
load_config(parent_path)
|
| 72 |
+
if parent_config is None
|
| 73 |
+
else OmegaConf.merge(parent_config, load_config(parent_path))
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if len(config.keys()) > 0:
|
| 77 |
+
config = OmegaConf.merge(parent_config, config)
|
| 78 |
+
else:
|
| 79 |
+
config = parent_config
|
| 80 |
+
return config
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def import_item(path: str, name: str) -> Any:
|
| 84 |
+
"""
|
| 85 |
+
Import a python item. Example: import_item("path.to.file", "MyClass") -> MyClass
|
| 86 |
+
"""
|
| 87 |
+
return getattr(importlib.import_module(path), name)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def create_object(config: DictConfig) -> Any:
|
| 91 |
+
"""
|
| 92 |
+
Create an object from config.
|
| 93 |
+
The config is expected to contains the following:
|
| 94 |
+
__object__:
|
| 95 |
+
path: path.to.module
|
| 96 |
+
name: MyClass
|
| 97 |
+
args: as_config | as_params (default to as_config)
|
| 98 |
+
"""
|
| 99 |
+
item = import_item(
|
| 100 |
+
path=config.__object__.path,
|
| 101 |
+
name=config.__object__.name,
|
| 102 |
+
)
|
| 103 |
+
args = config.__object__.get("args", "as_config")
|
| 104 |
+
if args == "as_config":
|
| 105 |
+
return item(config)
|
| 106 |
+
if args == "as_params":
|
| 107 |
+
config = OmegaConf.to_object(config)
|
| 108 |
+
config.pop("__object__")
|
| 109 |
+
return item(**config)
|
| 110 |
+
raise NotImplementedError(f"Unknown args type: {args}")
|
common/decorators.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Decorators.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import functools
|
| 20 |
+
import threading
|
| 21 |
+
import time
|
| 22 |
+
from typing import Callable
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
from common.distributed import barrier_if_distributed, get_global_rank, get_local_rank
|
| 26 |
+
from common.logger import get_logger
|
| 27 |
+
|
| 28 |
+
logger = get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def log_on_entry(func: Callable) -> Callable:
|
| 32 |
+
"""
|
| 33 |
+
Functions with this decorator will log the function name at entry.
|
| 34 |
+
When using multiple decorators, this must be applied innermost to properly capture the name.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def log_on_entry_wrapper(*args, **kwargs):
|
| 38 |
+
logger.info(f"Entering {func.__name__}")
|
| 39 |
+
return func(*args, **kwargs)
|
| 40 |
+
|
| 41 |
+
return log_on_entry_wrapper
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def barrier_on_entry(func: Callable) -> Callable:
|
| 45 |
+
"""
|
| 46 |
+
Functions with this decorator will start executing when all ranks are ready to enter.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
def barrier_on_entry_wrapper(*args, **kwargs):
|
| 50 |
+
barrier_if_distributed()
|
| 51 |
+
return func(*args, **kwargs)
|
| 52 |
+
|
| 53 |
+
return barrier_on_entry_wrapper
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _conditional_execute_wrapper_factory(execute: bool, func: Callable) -> Callable:
|
| 57 |
+
"""
|
| 58 |
+
Helper function for local_rank_zero_only and global_rank_zero_only.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def conditional_execute_wrapper(*args, **kwargs):
|
| 62 |
+
# Only execute if needed.
|
| 63 |
+
result = func(*args, **kwargs) if execute else None
|
| 64 |
+
# All GPUs must wait.
|
| 65 |
+
barrier_if_distributed()
|
| 66 |
+
# Return results.
|
| 67 |
+
return result
|
| 68 |
+
|
| 69 |
+
return conditional_execute_wrapper
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _asserted_wrapper_factory(condition: bool, func: Callable, err_msg: str = "") -> Callable:
|
| 73 |
+
"""
|
| 74 |
+
Helper function for some functions with special constraints,
|
| 75 |
+
especially functions called by other global_rank_zero_only / local_rank_zero_only ones,
|
| 76 |
+
in case they are wrongly invoked in other scenarios.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def asserted_execute_wrapper(*args, **kwargs):
|
| 80 |
+
assert condition, err_msg
|
| 81 |
+
result = func(*args, **kwargs)
|
| 82 |
+
return result
|
| 83 |
+
|
| 84 |
+
return asserted_execute_wrapper
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def local_rank_zero_only(func: Callable) -> Callable:
|
| 88 |
+
"""
|
| 89 |
+
Functions with this decorator will only execute on local rank zero.
|
| 90 |
+
"""
|
| 91 |
+
return _conditional_execute_wrapper_factory(get_local_rank() == 0, func)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def global_rank_zero_only(func: Callable) -> Callable:
|
| 95 |
+
"""
|
| 96 |
+
Functions with this decorator will only execute on global rank zero.
|
| 97 |
+
"""
|
| 98 |
+
return _conditional_execute_wrapper_factory(get_global_rank() == 0, func)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def assert_only_global_rank_zero(func: Callable) -> Callable:
|
| 102 |
+
"""
|
| 103 |
+
Functions with this decorator are only accessible to processes with global rank zero.
|
| 104 |
+
"""
|
| 105 |
+
return _asserted_wrapper_factory(
|
| 106 |
+
get_global_rank() == 0, func, err_msg="Not accessible to processes with global_rank != 0"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def assert_only_local_rank_zero(func: Callable) -> Callable:
|
| 111 |
+
"""
|
| 112 |
+
Functions with this decorator are only accessible to processes with local rank zero.
|
| 113 |
+
"""
|
| 114 |
+
return _asserted_wrapper_factory(
|
| 115 |
+
get_local_rank() == 0, func, err_msg="Not accessible to processes with local_rank != 0"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def new_thread(func: Callable) -> Callable:
|
| 120 |
+
"""
|
| 121 |
+
Functions with this decorator will run in a new thread.
|
| 122 |
+
The function will return the thread, which can be joined to wait for completion.
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
def new_thread_wrapper(*args, **kwargs):
|
| 126 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs)
|
| 127 |
+
thread.start()
|
| 128 |
+
return thread
|
| 129 |
+
|
| 130 |
+
return new_thread_wrapper
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def log_runtime(func: Callable) -> Callable:
|
| 134 |
+
"""
|
| 135 |
+
Functions with this decorator will logging the runtime.
|
| 136 |
+
"""
|
| 137 |
+
|
| 138 |
+
@functools.wraps(func)
|
| 139 |
+
def wrapped(*args, **kwargs):
|
| 140 |
+
torch.distributed.barrier()
|
| 141 |
+
start = time.perf_counter()
|
| 142 |
+
result = func(*args, **kwargs)
|
| 143 |
+
torch.distributed.barrier()
|
| 144 |
+
logger.info(f"Completed {func.__name__} in {time.perf_counter() - start:.3f} seconds.")
|
| 145 |
+
return result
|
| 146 |
+
|
| 147 |
+
return wrapped
|
common/diffusion/__init__.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Diffusion package.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from .config import (
|
| 20 |
+
create_sampler_from_config,
|
| 21 |
+
create_sampling_timesteps_from_config,
|
| 22 |
+
create_schedule_from_config,
|
| 23 |
+
)
|
| 24 |
+
from .samplers.base import Sampler
|
| 25 |
+
from .samplers.euler import EulerSampler
|
| 26 |
+
from .schedules.base import Schedule
|
| 27 |
+
from .schedules.lerp import LinearInterpolationSchedule
|
| 28 |
+
from .timesteps.base import SamplingTimesteps, Timesteps
|
| 29 |
+
from .timesteps.sampling.trailing import UniformTrailingSamplingTimesteps
|
| 30 |
+
from .types import PredictionType, SamplingDirection
|
| 31 |
+
from .utils import classifier_free_guidance, classifier_free_guidance_dispatcher, expand_dims
|
| 32 |
+
|
| 33 |
+
__all__ = [
|
| 34 |
+
# Configs
|
| 35 |
+
"create_sampler_from_config",
|
| 36 |
+
"create_sampling_timesteps_from_config",
|
| 37 |
+
"create_schedule_from_config",
|
| 38 |
+
# Schedules
|
| 39 |
+
"Schedule",
|
| 40 |
+
"DiscreteVariancePreservingSchedule",
|
| 41 |
+
"LinearInterpolationSchedule",
|
| 42 |
+
# Samplers
|
| 43 |
+
"Sampler",
|
| 44 |
+
"EulerSampler",
|
| 45 |
+
# Timesteps
|
| 46 |
+
"Timesteps",
|
| 47 |
+
"SamplingTimesteps",
|
| 48 |
+
# Types
|
| 49 |
+
"PredictionType",
|
| 50 |
+
"SamplingDirection",
|
| 51 |
+
"UniformTrailingSamplingTimesteps",
|
| 52 |
+
# Utils
|
| 53 |
+
"classifier_free_guidance",
|
| 54 |
+
"classifier_free_guidance_dispatcher",
|
| 55 |
+
"expand_dims",
|
| 56 |
+
]
|
common/diffusion/config.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Utility functions for creating schedules and samplers from config.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from omegaconf import DictConfig
|
| 21 |
+
|
| 22 |
+
from .samplers.base import Sampler
|
| 23 |
+
from .samplers.euler import EulerSampler
|
| 24 |
+
from .schedules.base import Schedule
|
| 25 |
+
from .schedules.lerp import LinearInterpolationSchedule
|
| 26 |
+
from .timesteps.base import SamplingTimesteps
|
| 27 |
+
from .timesteps.sampling.trailing import UniformTrailingSamplingTimesteps
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def create_schedule_from_config(
|
| 31 |
+
config: DictConfig,
|
| 32 |
+
device: torch.device,
|
| 33 |
+
dtype: torch.dtype = torch.float32,
|
| 34 |
+
) -> Schedule:
|
| 35 |
+
"""
|
| 36 |
+
Create a schedule from configuration.
|
| 37 |
+
"""
|
| 38 |
+
if config.type == "lerp":
|
| 39 |
+
return LinearInterpolationSchedule(T=config.get("T", 1.0))
|
| 40 |
+
|
| 41 |
+
raise NotImplementedError
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def create_sampler_from_config(
|
| 45 |
+
config: DictConfig,
|
| 46 |
+
schedule: Schedule,
|
| 47 |
+
timesteps: SamplingTimesteps,
|
| 48 |
+
) -> Sampler:
|
| 49 |
+
"""
|
| 50 |
+
Create a sampler from configuration.
|
| 51 |
+
"""
|
| 52 |
+
if config.type == "euler":
|
| 53 |
+
return EulerSampler(
|
| 54 |
+
schedule=schedule,
|
| 55 |
+
timesteps=timesteps,
|
| 56 |
+
prediction_type=config.prediction_type,
|
| 57 |
+
)
|
| 58 |
+
raise NotImplementedError
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def create_sampling_timesteps_from_config(
|
| 62 |
+
config: DictConfig,
|
| 63 |
+
schedule: Schedule,
|
| 64 |
+
device: torch.device,
|
| 65 |
+
dtype: torch.dtype = torch.float32,
|
| 66 |
+
) -> SamplingTimesteps:
|
| 67 |
+
if config.type == "uniform_trailing":
|
| 68 |
+
return UniformTrailingSamplingTimesteps(
|
| 69 |
+
T=schedule.T,
|
| 70 |
+
steps=config.steps,
|
| 71 |
+
shift=config.get("shift", 1.0),
|
| 72 |
+
device=device,
|
| 73 |
+
)
|
| 74 |
+
raise NotImplementedError
|
common/diffusion/samplers/base.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Sampler base class.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from abc import ABC, abstractmethod
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from typing import Callable
|
| 22 |
+
import torch
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
|
| 25 |
+
from ..schedules.base import Schedule
|
| 26 |
+
from ..timesteps.base import SamplingTimesteps
|
| 27 |
+
from ..types import PredictionType, SamplingDirection
|
| 28 |
+
from ..utils import assert_schedule_timesteps_compatible
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class SamplerModelArgs:
|
| 33 |
+
x_t: torch.Tensor
|
| 34 |
+
t: torch.Tensor
|
| 35 |
+
i: int
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class Sampler(ABC):
|
| 39 |
+
"""
|
| 40 |
+
Samplers are ODE/SDE solvers.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(
|
| 44 |
+
self,
|
| 45 |
+
schedule: Schedule,
|
| 46 |
+
timesteps: SamplingTimesteps,
|
| 47 |
+
prediction_type: PredictionType,
|
| 48 |
+
return_endpoint: bool = True,
|
| 49 |
+
):
|
| 50 |
+
assert_schedule_timesteps_compatible(
|
| 51 |
+
schedule=schedule,
|
| 52 |
+
timesteps=timesteps,
|
| 53 |
+
)
|
| 54 |
+
self.schedule = schedule
|
| 55 |
+
self.timesteps = timesteps
|
| 56 |
+
self.prediction_type = prediction_type
|
| 57 |
+
self.return_endpoint = return_endpoint
|
| 58 |
+
|
| 59 |
+
@abstractmethod
|
| 60 |
+
def sample(
|
| 61 |
+
self,
|
| 62 |
+
x: torch.Tensor,
|
| 63 |
+
f: Callable[[SamplerModelArgs], torch.Tensor],
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
+
"""
|
| 66 |
+
Generate a new sample given the the intial sample x and score function f.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
def get_next_timestep(
|
| 70 |
+
self,
|
| 71 |
+
t: torch.Tensor,
|
| 72 |
+
) -> torch.Tensor:
|
| 73 |
+
"""
|
| 74 |
+
Get the next sample timestep.
|
| 75 |
+
Support multiple different timesteps t in a batch.
|
| 76 |
+
If no more steps, return out of bound value -1 or T+1.
|
| 77 |
+
"""
|
| 78 |
+
T = self.timesteps.T
|
| 79 |
+
steps = len(self.timesteps)
|
| 80 |
+
curr_idx = self.timesteps.index(t)
|
| 81 |
+
next_idx = curr_idx + 1
|
| 82 |
+
bound = -1 if self.timesteps.direction == SamplingDirection.backward else T + 1
|
| 83 |
+
|
| 84 |
+
s = self.timesteps[next_idx.clamp_max(steps - 1)]
|
| 85 |
+
s = s.where(next_idx < steps, bound)
|
| 86 |
+
return s
|
| 87 |
+
|
| 88 |
+
def get_endpoint(
|
| 89 |
+
self,
|
| 90 |
+
pred: torch.Tensor,
|
| 91 |
+
x_t: torch.Tensor,
|
| 92 |
+
t: torch.Tensor,
|
| 93 |
+
) -> torch.Tensor:
|
| 94 |
+
"""
|
| 95 |
+
Get to the endpoint of the probability flow.
|
| 96 |
+
"""
|
| 97 |
+
x_0, x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t)
|
| 98 |
+
return x_0 if self.timesteps.direction == SamplingDirection.backward else x_T
|
| 99 |
+
|
| 100 |
+
def get_progress_bar(self):
|
| 101 |
+
"""
|
| 102 |
+
Get progress bar for sampling.
|
| 103 |
+
"""
|
| 104 |
+
return tqdm(
|
| 105 |
+
iterable=range(len(self.timesteps) - (0 if self.return_endpoint else 1)),
|
| 106 |
+
dynamic_ncols=True,
|
| 107 |
+
desc=self.__class__.__name__,
|
| 108 |
+
)
|
common/diffusion/samplers/euler.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
Euler ODE solver.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
from typing import Callable
|
| 21 |
+
import torch
|
| 22 |
+
from einops import rearrange
|
| 23 |
+
from torch.nn import functional as F
|
| 24 |
+
|
| 25 |
+
from models.dit_v2 import na
|
| 26 |
+
|
| 27 |
+
from ..types import PredictionType
|
| 28 |
+
from ..utils import expand_dims
|
| 29 |
+
from .base import Sampler, SamplerModelArgs
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class EulerSampler(Sampler):
|
| 33 |
+
"""
|
| 34 |
+
The Euler method is the simplest ODE solver.
|
| 35 |
+
<https://en.wikipedia.org/wiki/Euler_method>
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def sample(
|
| 39 |
+
self,
|
| 40 |
+
x: torch.Tensor,
|
| 41 |
+
f: Callable[[SamplerModelArgs], torch.Tensor],
|
| 42 |
+
) -> torch.Tensor:
|
| 43 |
+
timesteps = self.timesteps.timesteps
|
| 44 |
+
progress = self.get_progress_bar()
|
| 45 |
+
i = 0
|
| 46 |
+
for t, s in zip(timesteps[:-1], timesteps[1:]):
|
| 47 |
+
pred = f(SamplerModelArgs(x, t, i))
|
| 48 |
+
x = self.step_to(pred, x, t, s)
|
| 49 |
+
i += 1
|
| 50 |
+
progress.update()
|
| 51 |
+
|
| 52 |
+
if self.return_endpoint:
|
| 53 |
+
t = timesteps[-1]
|
| 54 |
+
pred = f(SamplerModelArgs(x, t, i))
|
| 55 |
+
x = self.get_endpoint(pred, x, t)
|
| 56 |
+
progress.update()
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
def step(
|
| 60 |
+
self,
|
| 61 |
+
pred: torch.Tensor,
|
| 62 |
+
x_t: torch.Tensor,
|
| 63 |
+
t: torch.Tensor,
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
+
"""
|
| 66 |
+
Step to the next timestep.
|
| 67 |
+
"""
|
| 68 |
+
return self.step_to(pred, x_t, t, self.get_next_timestep(t))
|
| 69 |
+
|
| 70 |
+
def step_to(
|
| 71 |
+
self,
|
| 72 |
+
pred: torch.Tensor,
|
| 73 |
+
x_t: torch.Tensor,
|
| 74 |
+
t: torch.Tensor,
|
| 75 |
+
s: torch.Tensor,
|
| 76 |
+
) -> torch.Tensor:
|
| 77 |
+
"""
|
| 78 |
+
Steps from x_t at timestep t to x_s at timestep s. Returns x_s.
|
| 79 |
+
"""
|
| 80 |
+
t = expand_dims(t, x_t.ndim)
|
| 81 |
+
s = expand_dims(s, x_t.ndim)
|
| 82 |
+
T = self.schedule.T
|
| 83 |
+
# Step from x_t to x_s.
|
| 84 |
+
pred_x_0, pred_x_T = self.schedule.convert_from_pred(pred, self.prediction_type, x_t, t)
|
| 85 |
+
pred_x_s = self.schedule.forward(pred_x_0, pred_x_T, s.clamp(0, T))
|
| 86 |
+
# Clamp x_s to x_0 and x_T if s is out of bound.
|
| 87 |
+
pred_x_s = pred_x_s.where(s >= 0, pred_x_0)
|
| 88 |
+
pred_x_s = pred_x_s.where(s <= T, pred_x_T)
|
| 89 |
+
return pred_x_s
|
common/diffusion/schedules/base.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Schedule base class.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from abc import ABC, abstractmethod, abstractproperty
|
| 20 |
+
from typing import Tuple, Union
|
| 21 |
+
import torch
|
| 22 |
+
|
| 23 |
+
from ..types import PredictionType
|
| 24 |
+
from ..utils import expand_dims
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Schedule(ABC):
|
| 28 |
+
"""
|
| 29 |
+
Diffusion schedules are uniquely defined by T, A, B:
|
| 30 |
+
|
| 31 |
+
x_t = A(t) * x_0 + B(t) * x_T, where t in [0, T]
|
| 32 |
+
|
| 33 |
+
Schedules can be continuous or discrete.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
@abstractproperty
|
| 37 |
+
def T(self) -> Union[int, float]:
|
| 38 |
+
"""
|
| 39 |
+
Maximum timestep inclusive.
|
| 40 |
+
Schedule is continuous if float, discrete if int.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
@abstractmethod
|
| 44 |
+
def A(self, t: torch.Tensor) -> torch.Tensor:
|
| 45 |
+
"""
|
| 46 |
+
Interpolation coefficient A.
|
| 47 |
+
Returns tensor with the same shape as t.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
@abstractmethod
|
| 51 |
+
def B(self, t: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
"""
|
| 53 |
+
Interpolation coefficient B.
|
| 54 |
+
Returns tensor with the same shape as t.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
# ----------------------------------------------------
|
| 58 |
+
|
| 59 |
+
def snr(self, t: torch.Tensor) -> torch.Tensor:
|
| 60 |
+
"""
|
| 61 |
+
Signal to noise ratio.
|
| 62 |
+
Returns tensor with the same shape as t.
|
| 63 |
+
"""
|
| 64 |
+
return (self.A(t) ** 2) / (self.B(t) ** 2)
|
| 65 |
+
|
| 66 |
+
def isnr(self, snr: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
"""
|
| 68 |
+
Inverse signal to noise ratio.
|
| 69 |
+
Returns tensor with the same shape as snr.
|
| 70 |
+
Subclass may implement.
|
| 71 |
+
"""
|
| 72 |
+
raise NotImplementedError
|
| 73 |
+
|
| 74 |
+
# ----------------------------------------------------
|
| 75 |
+
|
| 76 |
+
def is_continuous(self) -> bool:
|
| 77 |
+
"""
|
| 78 |
+
Whether the schedule is continuous.
|
| 79 |
+
"""
|
| 80 |
+
return isinstance(self.T, float)
|
| 81 |
+
|
| 82 |
+
def forward(self, x_0: torch.Tensor, x_T: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
| 83 |
+
"""
|
| 84 |
+
Diffusion forward function.
|
| 85 |
+
"""
|
| 86 |
+
t = expand_dims(t, x_0.ndim)
|
| 87 |
+
return self.A(t) * x_0 + self.B(t) * x_T
|
| 88 |
+
|
| 89 |
+
def convert_from_pred(
|
| 90 |
+
self, pred: torch.Tensor, pred_type: PredictionType, x_t: torch.Tensor, t: torch.Tensor
|
| 91 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 92 |
+
"""
|
| 93 |
+
Convert from prediction. Return predicted x_0 and x_T.
|
| 94 |
+
"""
|
| 95 |
+
t = expand_dims(t, x_t.ndim)
|
| 96 |
+
A_t = self.A(t)
|
| 97 |
+
B_t = self.B(t)
|
| 98 |
+
|
| 99 |
+
if pred_type == PredictionType.x_T:
|
| 100 |
+
pred_x_T = pred
|
| 101 |
+
pred_x_0 = (x_t - B_t * pred_x_T) / A_t
|
| 102 |
+
elif pred_type == PredictionType.x_0:
|
| 103 |
+
pred_x_0 = pred
|
| 104 |
+
pred_x_T = (x_t - A_t * pred_x_0) / B_t
|
| 105 |
+
elif pred_type == PredictionType.v_cos:
|
| 106 |
+
pred_x_0 = A_t * x_t - B_t * pred
|
| 107 |
+
pred_x_T = A_t * pred + B_t * x_t
|
| 108 |
+
elif pred_type == PredictionType.v_lerp:
|
| 109 |
+
pred_x_0 = (x_t - B_t * pred) / (A_t + B_t)
|
| 110 |
+
pred_x_T = (x_t + A_t * pred) / (A_t + B_t)
|
| 111 |
+
else:
|
| 112 |
+
raise NotImplementedError
|
| 113 |
+
|
| 114 |
+
return pred_x_0, pred_x_T
|
| 115 |
+
|
| 116 |
+
def convert_to_pred(
|
| 117 |
+
self, x_0: torch.Tensor, x_T: torch.Tensor, t: torch.Tensor, pred_type: PredictionType
|
| 118 |
+
) -> torch.FloatTensor:
|
| 119 |
+
"""
|
| 120 |
+
Convert to prediction target given x_0 and x_T.
|
| 121 |
+
"""
|
| 122 |
+
if pred_type == PredictionType.x_T:
|
| 123 |
+
return x_T
|
| 124 |
+
if pred_type == PredictionType.x_0:
|
| 125 |
+
return x_0
|
| 126 |
+
if pred_type == PredictionType.v_cos:
|
| 127 |
+
t = expand_dims(t, x_0.ndim)
|
| 128 |
+
return self.A(t) * x_T - self.B(t) * x_0
|
| 129 |
+
if pred_type == PredictionType.v_lerp:
|
| 130 |
+
return x_T - x_0
|
| 131 |
+
raise NotImplementedError
|
common/diffusion/schedules/lerp.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Linear interpolation schedule (lerp).
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Union
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
from .base import Schedule
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class LinearInterpolationSchedule(Schedule):
|
| 26 |
+
"""
|
| 27 |
+
Linear interpolation schedule (lerp) is proposed by flow matching and rectified flow.
|
| 28 |
+
It leads to straighter probability flow theoretically. It is also used by Stable Diffusion 3.
|
| 29 |
+
<https://arxiv.org/abs/2209.03003>
|
| 30 |
+
<https://arxiv.org/abs/2210.02747>
|
| 31 |
+
|
| 32 |
+
x_t = (1 - t) * x_0 + t * x_T
|
| 33 |
+
|
| 34 |
+
Can be either continuous or discrete.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(self, T: Union[int, float] = 1.0):
|
| 38 |
+
self._T = T
|
| 39 |
+
|
| 40 |
+
@property
|
| 41 |
+
def T(self) -> Union[int, float]:
|
| 42 |
+
return self._T
|
| 43 |
+
|
| 44 |
+
def A(self, t: torch.Tensor) -> torch.Tensor:
|
| 45 |
+
return 1 - (t / self.T)
|
| 46 |
+
|
| 47 |
+
def B(self, t: torch.Tensor) -> torch.Tensor:
|
| 48 |
+
return t / self.T
|
| 49 |
+
|
| 50 |
+
# ----------------------------------------------------
|
| 51 |
+
|
| 52 |
+
def isnr(self, snr: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
t = self.T / (1 + snr**0.5)
|
| 54 |
+
t = t if self.is_continuous() else t.round().int()
|
| 55 |
+
return t
|
common/diffusion/timesteps/base.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from typing import Sequence, Union
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ..types import SamplingDirection
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Timesteps(ABC):
|
| 9 |
+
"""
|
| 10 |
+
Timesteps base class.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
def __init__(self, T: Union[int, float]):
|
| 14 |
+
assert T > 0
|
| 15 |
+
self._T = T
|
| 16 |
+
|
| 17 |
+
@property
|
| 18 |
+
def T(self) -> Union[int, float]:
|
| 19 |
+
"""
|
| 20 |
+
Maximum timestep inclusive.
|
| 21 |
+
int if discrete, float if continuous.
|
| 22 |
+
"""
|
| 23 |
+
return self._T
|
| 24 |
+
|
| 25 |
+
def is_continuous(self) -> bool:
|
| 26 |
+
"""
|
| 27 |
+
Whether the schedule is continuous.
|
| 28 |
+
"""
|
| 29 |
+
return isinstance(self.T, float)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class SamplingTimesteps(Timesteps):
|
| 33 |
+
"""
|
| 34 |
+
Sampling timesteps.
|
| 35 |
+
It defines the discretization of sampling steps.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
T: Union[int, float],
|
| 41 |
+
timesteps: torch.Tensor,
|
| 42 |
+
direction: SamplingDirection,
|
| 43 |
+
):
|
| 44 |
+
assert timesteps.ndim == 1
|
| 45 |
+
super().__init__(T)
|
| 46 |
+
self.timesteps = timesteps
|
| 47 |
+
self.direction = direction
|
| 48 |
+
|
| 49 |
+
def __len__(self) -> int:
|
| 50 |
+
"""
|
| 51 |
+
Number of sampling steps.
|
| 52 |
+
"""
|
| 53 |
+
return len(self.timesteps)
|
| 54 |
+
|
| 55 |
+
def __getitem__(self, idx: Union[int, torch.IntTensor]) -> torch.Tensor:
|
| 56 |
+
"""
|
| 57 |
+
The timestep at the sampling step.
|
| 58 |
+
Returns a scalar tensor if idx is int,
|
| 59 |
+
or tensor of the same size if idx is a tensor.
|
| 60 |
+
"""
|
| 61 |
+
return self.timesteps[idx]
|
| 62 |
+
|
| 63 |
+
def index(self, t: torch.Tensor) -> torch.Tensor:
|
| 64 |
+
"""
|
| 65 |
+
Find index by t.
|
| 66 |
+
Return index of the same shape as t.
|
| 67 |
+
Index is -1 if t not found in timesteps.
|
| 68 |
+
"""
|
| 69 |
+
i, j = t.reshape(-1, 1).eq(self.timesteps).nonzero(as_tuple=True)
|
| 70 |
+
idx = torch.full_like(t, fill_value=-1, dtype=torch.int)
|
| 71 |
+
idx.view(-1)[i] = j.int()
|
| 72 |
+
return idx
|
common/diffusion/timesteps/sampling/trailing.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from ...types import SamplingDirection
|
| 18 |
+
from ..base import SamplingTimesteps
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class UniformTrailingSamplingTimesteps(SamplingTimesteps):
|
| 22 |
+
"""
|
| 23 |
+
Uniform trailing sampling timesteps.
|
| 24 |
+
Defined in (https://arxiv.org/abs/2305.08891)
|
| 25 |
+
|
| 26 |
+
Shift is proposed in SD3 for RF schedule.
|
| 27 |
+
Defined in (https://arxiv.org/pdf/2403.03206) eq.23
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
T: int,
|
| 33 |
+
steps: int,
|
| 34 |
+
shift: float = 1.0,
|
| 35 |
+
device: torch.device = "cpu",
|
| 36 |
+
):
|
| 37 |
+
# Create trailing timesteps.
|
| 38 |
+
timesteps = torch.arange(1.0, 0.0, -1.0 / steps, device=device)
|
| 39 |
+
|
| 40 |
+
# Shift timesteps.
|
| 41 |
+
timesteps = shift * timesteps / (1 + (shift - 1) * timesteps)
|
| 42 |
+
|
| 43 |
+
# Scale to T range.
|
| 44 |
+
if isinstance(T, float):
|
| 45 |
+
timesteps = timesteps * T
|
| 46 |
+
else:
|
| 47 |
+
timesteps = timesteps.mul(T + 1).sub(1).round().int()
|
| 48 |
+
|
| 49 |
+
super().__init__(T=T, timesteps=timesteps, direction=SamplingDirection.backward)
|
common/diffusion/types.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Type definitions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from enum import Enum
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class PredictionType(str, Enum):
|
| 23 |
+
"""
|
| 24 |
+
x_0:
|
| 25 |
+
Predict data sample.
|
| 26 |
+
x_T:
|
| 27 |
+
Predict noise sample.
|
| 28 |
+
Proposed by DDPM (https://arxiv.org/abs/2006.11239)
|
| 29 |
+
Proved problematic by zsnr paper (https://arxiv.org/abs/2305.08891)
|
| 30 |
+
v_cos:
|
| 31 |
+
Predict velocity dx/dt based on the cosine schedule (A_t * x_T - B_t * x_0).
|
| 32 |
+
Proposed by progressive distillation (https://arxiv.org/abs/2202.00512)
|
| 33 |
+
v_lerp:
|
| 34 |
+
Predict velocity dx/dt based on the lerp schedule (x_T - x_0).
|
| 35 |
+
Proposed by rectified flow (https://arxiv.org/abs/2209.03003)
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
x_0 = "x_0"
|
| 39 |
+
x_T = "x_T"
|
| 40 |
+
v_cos = "v_cos"
|
| 41 |
+
v_lerp = "v_lerp"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class SamplingDirection(str, Enum):
|
| 45 |
+
"""
|
| 46 |
+
backward: Sample from x_T to x_0 for data generation.
|
| 47 |
+
forward: Sample from x_0 to x_T for noise inversion.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
backward = "backward"
|
| 51 |
+
forward = "forward"
|
| 52 |
+
|
| 53 |
+
@staticmethod
|
| 54 |
+
def reverse(direction):
|
| 55 |
+
if direction == SamplingDirection.backward:
|
| 56 |
+
return SamplingDirection.forward
|
| 57 |
+
if direction == SamplingDirection.forward:
|
| 58 |
+
return SamplingDirection.backward
|
| 59 |
+
raise NotImplementedError
|
common/diffusion/utils.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Utility functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Callable
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def expand_dims(tensor: torch.Tensor, ndim: int):
|
| 24 |
+
"""
|
| 25 |
+
Expand tensor to target ndim. New dims are added to the right.
|
| 26 |
+
For example, if the tensor shape was (8,), target ndim is 4, return (8, 1, 1, 1).
|
| 27 |
+
"""
|
| 28 |
+
shape = tensor.shape + (1,) * (ndim - tensor.ndim)
|
| 29 |
+
return tensor.reshape(shape)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def assert_schedule_timesteps_compatible(schedule, timesteps):
|
| 33 |
+
"""
|
| 34 |
+
Check if schedule and timesteps are compatible.
|
| 35 |
+
"""
|
| 36 |
+
if schedule.T != timesteps.T:
|
| 37 |
+
raise ValueError("Schedule and timesteps must have the same T.")
|
| 38 |
+
if schedule.is_continuous() != timesteps.is_continuous():
|
| 39 |
+
raise ValueError("Schedule and timesteps must have the same continuity.")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def classifier_free_guidance(
|
| 43 |
+
pos: torch.Tensor,
|
| 44 |
+
neg: torch.Tensor,
|
| 45 |
+
scale: float,
|
| 46 |
+
rescale: float = 0.0,
|
| 47 |
+
):
|
| 48 |
+
"""
|
| 49 |
+
Apply classifier-free guidance.
|
| 50 |
+
"""
|
| 51 |
+
# Classifier-free guidance (https://arxiv.org/abs/2207.12598)
|
| 52 |
+
cfg = neg + scale * (pos - neg)
|
| 53 |
+
|
| 54 |
+
# Classifier-free guidance rescale (https://arxiv.org/pdf/2305.08891.pdf)
|
| 55 |
+
if rescale != 0.0:
|
| 56 |
+
pos_std = pos.std(dim=list(range(1, pos.ndim)), keepdim=True)
|
| 57 |
+
cfg_std = cfg.std(dim=list(range(1, cfg.ndim)), keepdim=True)
|
| 58 |
+
factor = pos_std / cfg_std
|
| 59 |
+
factor = rescale * factor + (1 - rescale)
|
| 60 |
+
cfg *= factor
|
| 61 |
+
|
| 62 |
+
return cfg
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def classifier_free_guidance_dispatcher(
|
| 66 |
+
pos: Callable,
|
| 67 |
+
neg: Callable,
|
| 68 |
+
scale: float,
|
| 69 |
+
rescale: float = 0.0,
|
| 70 |
+
):
|
| 71 |
+
"""
|
| 72 |
+
Optionally execute models depending on classifer-free guidance scale.
|
| 73 |
+
"""
|
| 74 |
+
# If scale is 1, no need to execute neg model.
|
| 75 |
+
if scale == 1.0:
|
| 76 |
+
return pos()
|
| 77 |
+
|
| 78 |
+
# Otherwise, execute both pos nad neg models and apply cfg.
|
| 79 |
+
return classifier_free_guidance(
|
| 80 |
+
pos=pos(),
|
| 81 |
+
neg=neg(),
|
| 82 |
+
scale=scale,
|
| 83 |
+
rescale=rescale,
|
| 84 |
+
)
|
common/distributed/__init__.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Distributed package.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from .basic import (
|
| 20 |
+
barrier_if_distributed,
|
| 21 |
+
convert_to_ddp,
|
| 22 |
+
get_device,
|
| 23 |
+
get_global_rank,
|
| 24 |
+
get_local_rank,
|
| 25 |
+
get_world_size,
|
| 26 |
+
init_torch,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
__all__ = [
|
| 30 |
+
"barrier_if_distributed",
|
| 31 |
+
"convert_to_ddp",
|
| 32 |
+
"get_device",
|
| 33 |
+
"get_global_rank",
|
| 34 |
+
"get_local_rank",
|
| 35 |
+
"get_world_size",
|
| 36 |
+
"init_torch",
|
| 37 |
+
]
|
common/distributed/advanced.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Advanced distributed functions for sequence parallel.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Optional, List
|
| 20 |
+
import torch
|
| 21 |
+
import torch.distributed as dist
|
| 22 |
+
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
| 23 |
+
from torch.distributed.fsdp import ShardingStrategy
|
| 24 |
+
|
| 25 |
+
from .basic import get_global_rank, get_world_size
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
_DATA_PARALLEL_GROUP = None
|
| 29 |
+
_SEQUENCE_PARALLEL_GROUP = None
|
| 30 |
+
_SEQUENCE_PARALLEL_CPU_GROUP = None
|
| 31 |
+
_MODEL_SHARD_CPU_INTER_GROUP = None
|
| 32 |
+
_MODEL_SHARD_CPU_INTRA_GROUP = None
|
| 33 |
+
_MODEL_SHARD_INTER_GROUP = None
|
| 34 |
+
_MODEL_SHARD_INTRA_GROUP = None
|
| 35 |
+
_SEQUENCE_PARALLEL_GLOBAL_RANKS = None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_data_parallel_group() -> Optional[dist.ProcessGroup]:
|
| 39 |
+
"""
|
| 40 |
+
Get data parallel process group.
|
| 41 |
+
"""
|
| 42 |
+
return _DATA_PARALLEL_GROUP
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]:
|
| 46 |
+
"""
|
| 47 |
+
Get sequence parallel process group.
|
| 48 |
+
"""
|
| 49 |
+
return _SEQUENCE_PARALLEL_GROUP
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]:
|
| 53 |
+
"""
|
| 54 |
+
Get sequence parallel CPU process group.
|
| 55 |
+
"""
|
| 56 |
+
return _SEQUENCE_PARALLEL_CPU_GROUP
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_data_parallel_rank() -> int:
|
| 60 |
+
"""
|
| 61 |
+
Get data parallel rank.
|
| 62 |
+
"""
|
| 63 |
+
group = get_data_parallel_group()
|
| 64 |
+
return dist.get_rank(group) if group else get_global_rank()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_data_parallel_world_size() -> int:
|
| 68 |
+
"""
|
| 69 |
+
Get data parallel world size.
|
| 70 |
+
"""
|
| 71 |
+
group = get_data_parallel_group()
|
| 72 |
+
return dist.get_world_size(group) if group else get_world_size()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_sequence_parallel_rank() -> int:
|
| 76 |
+
"""
|
| 77 |
+
Get sequence parallel rank.
|
| 78 |
+
"""
|
| 79 |
+
group = get_sequence_parallel_group()
|
| 80 |
+
return dist.get_rank(group) if group else 0
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def get_sequence_parallel_world_size() -> int:
|
| 84 |
+
"""
|
| 85 |
+
Get sequence parallel world size.
|
| 86 |
+
"""
|
| 87 |
+
group = get_sequence_parallel_group()
|
| 88 |
+
return dist.get_world_size(group) if group else 1
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_shard_cpu_intra_group() -> Optional[dist.ProcessGroup]:
|
| 92 |
+
"""
|
| 93 |
+
Get the CPU intra process group of model sharding.
|
| 94 |
+
"""
|
| 95 |
+
return _MODEL_SHARD_CPU_INTRA_GROUP
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_shard_cpu_inter_group() -> Optional[dist.ProcessGroup]:
|
| 99 |
+
"""
|
| 100 |
+
Get the CPU inter process group of model sharding.
|
| 101 |
+
"""
|
| 102 |
+
return _MODEL_SHARD_CPU_INTER_GROUP
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def get_model_shard_intra_group() -> Optional[dist.ProcessGroup]:
|
| 106 |
+
"""
|
| 107 |
+
Get the GPU intra process group of model sharding.
|
| 108 |
+
"""
|
| 109 |
+
return _MODEL_SHARD_INTRA_GROUP
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def get_model_shard_inter_group() -> Optional[dist.ProcessGroup]:
|
| 113 |
+
"""
|
| 114 |
+
Get the GPU inter process group of model sharding.
|
| 115 |
+
"""
|
| 116 |
+
return _MODEL_SHARD_INTER_GROUP
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def init_sequence_parallel(sequence_parallel_size: int):
|
| 120 |
+
"""
|
| 121 |
+
Initialize sequence parallel.
|
| 122 |
+
"""
|
| 123 |
+
global _DATA_PARALLEL_GROUP
|
| 124 |
+
global _SEQUENCE_PARALLEL_GROUP
|
| 125 |
+
global _SEQUENCE_PARALLEL_CPU_GROUP
|
| 126 |
+
global _SEQUENCE_PARALLEL_GLOBAL_RANKS
|
| 127 |
+
assert dist.is_initialized()
|
| 128 |
+
world_size = dist.get_world_size()
|
| 129 |
+
rank = dist.get_rank()
|
| 130 |
+
data_parallel_size = world_size // sequence_parallel_size
|
| 131 |
+
for i in range(data_parallel_size):
|
| 132 |
+
start_rank = i * sequence_parallel_size
|
| 133 |
+
end_rank = (i + 1) * sequence_parallel_size
|
| 134 |
+
ranks = range(start_rank, end_rank)
|
| 135 |
+
group = dist.new_group(ranks)
|
| 136 |
+
cpu_group = dist.new_group(ranks, backend="gloo")
|
| 137 |
+
if rank in ranks:
|
| 138 |
+
_SEQUENCE_PARALLEL_GROUP = group
|
| 139 |
+
_SEQUENCE_PARALLEL_CPU_GROUP = cpu_group
|
| 140 |
+
_SEQUENCE_PARALLEL_GLOBAL_RANKS = list(ranks)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def init_model_shard_group(
|
| 144 |
+
*,
|
| 145 |
+
sharding_strategy: ShardingStrategy,
|
| 146 |
+
device_mesh: Optional[DeviceMesh] = None,
|
| 147 |
+
):
|
| 148 |
+
"""
|
| 149 |
+
Initialize process group of model sharding.
|
| 150 |
+
"""
|
| 151 |
+
global _MODEL_SHARD_INTER_GROUP
|
| 152 |
+
global _MODEL_SHARD_INTRA_GROUP
|
| 153 |
+
global _MODEL_SHARD_CPU_INTER_GROUP
|
| 154 |
+
global _MODEL_SHARD_CPU_INTRA_GROUP
|
| 155 |
+
assert dist.is_initialized()
|
| 156 |
+
world_size = dist.get_world_size()
|
| 157 |
+
if device_mesh is not None:
|
| 158 |
+
num_shards_per_group = device_mesh.shape[1]
|
| 159 |
+
elif sharding_strategy == ShardingStrategy.NO_SHARD:
|
| 160 |
+
num_shards_per_group = 1
|
| 161 |
+
elif sharding_strategy in [
|
| 162 |
+
ShardingStrategy.HYBRID_SHARD,
|
| 163 |
+
ShardingStrategy._HYBRID_SHARD_ZERO2,
|
| 164 |
+
]:
|
| 165 |
+
num_shards_per_group = torch.cuda.device_count()
|
| 166 |
+
else:
|
| 167 |
+
num_shards_per_group = world_size
|
| 168 |
+
num_groups = world_size // num_shards_per_group
|
| 169 |
+
device_mesh = (num_groups, num_shards_per_group)
|
| 170 |
+
|
| 171 |
+
gpu_mesh_2d = init_device_mesh("cuda", device_mesh, mesh_dim_names=("inter", "intra"))
|
| 172 |
+
cpu_mesh_2d = init_device_mesh("cpu", device_mesh, mesh_dim_names=("inter", "intra"))
|
| 173 |
+
|
| 174 |
+
_MODEL_SHARD_INTER_GROUP = gpu_mesh_2d.get_group("inter")
|
| 175 |
+
_MODEL_SHARD_INTRA_GROUP = gpu_mesh_2d.get_group("intra")
|
| 176 |
+
_MODEL_SHARD_CPU_INTER_GROUP = cpu_mesh_2d.get_group("inter")
|
| 177 |
+
_MODEL_SHARD_CPU_INTRA_GROUP = cpu_mesh_2d.get_group("intra")
|
| 178 |
+
|
| 179 |
+
def get_sequence_parallel_global_ranks() -> List[int]:
|
| 180 |
+
"""
|
| 181 |
+
Get all global ranks of the sequence parallel process group
|
| 182 |
+
that the caller rank belongs to.
|
| 183 |
+
"""
|
| 184 |
+
if _SEQUENCE_PARALLEL_GLOBAL_RANKS is None:
|
| 185 |
+
return [dist.get_rank()]
|
| 186 |
+
return _SEQUENCE_PARALLEL_GLOBAL_RANKS
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def get_next_sequence_parallel_rank() -> int:
|
| 190 |
+
"""
|
| 191 |
+
Get the next global rank of the sequence parallel process group
|
| 192 |
+
that the caller rank belongs to.
|
| 193 |
+
"""
|
| 194 |
+
sp_global_ranks = get_sequence_parallel_global_ranks()
|
| 195 |
+
sp_rank = get_sequence_parallel_rank()
|
| 196 |
+
sp_size = get_sequence_parallel_world_size()
|
| 197 |
+
return sp_global_ranks[(sp_rank + 1) % sp_size]
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def get_prev_sequence_parallel_rank() -> int:
|
| 201 |
+
"""
|
| 202 |
+
Get the previous global rank of the sequence parallel process group
|
| 203 |
+
that the caller rank belongs to.
|
| 204 |
+
"""
|
| 205 |
+
sp_global_ranks = get_sequence_parallel_global_ranks()
|
| 206 |
+
sp_rank = get_sequence_parallel_rank()
|
| 207 |
+
sp_size = get_sequence_parallel_world_size()
|
| 208 |
+
return sp_global_ranks[(sp_rank + sp_size - 1) % sp_size]
|
common/distributed/basic.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Distributed basic functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
from datetime import timedelta
|
| 21 |
+
import torch
|
| 22 |
+
import torch.distributed as dist
|
| 23 |
+
from torch.nn.parallel import DistributedDataParallel
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_global_rank() -> int:
|
| 27 |
+
"""
|
| 28 |
+
Get the global rank, the global index of the GPU.
|
| 29 |
+
"""
|
| 30 |
+
return int(os.environ.get("RANK", "0"))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_local_rank() -> int:
|
| 34 |
+
"""
|
| 35 |
+
Get the local rank, the local index of the GPU.
|
| 36 |
+
"""
|
| 37 |
+
return int(os.environ.get("LOCAL_RANK", "0"))
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_world_size() -> int:
|
| 41 |
+
"""
|
| 42 |
+
Get the world size, the total amount of GPUs.
|
| 43 |
+
"""
|
| 44 |
+
return int(os.environ.get("WORLD_SIZE", "1"))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_device() -> torch.device:
|
| 48 |
+
"""
|
| 49 |
+
Get current rank device.
|
| 50 |
+
"""
|
| 51 |
+
return torch.device("cuda", get_local_rank())
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def barrier_if_distributed(*args, **kwargs):
|
| 55 |
+
"""
|
| 56 |
+
Synchronizes all processes if under distributed context.
|
| 57 |
+
"""
|
| 58 |
+
if dist.is_initialized():
|
| 59 |
+
return dist.barrier(*args, **kwargs)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def init_torch(cudnn_benchmark=True, timeout=timedelta(seconds=600)):
|
| 63 |
+
"""
|
| 64 |
+
Common PyTorch initialization configuration.
|
| 65 |
+
"""
|
| 66 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 67 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 68 |
+
torch.backends.cudnn.benchmark = cudnn_benchmark
|
| 69 |
+
torch.cuda.set_device(get_local_rank())
|
| 70 |
+
dist.init_process_group(
|
| 71 |
+
backend="nccl",
|
| 72 |
+
rank=get_global_rank(),
|
| 73 |
+
world_size=get_world_size(),
|
| 74 |
+
timeout=timeout,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def convert_to_ddp(module: torch.nn.Module, **kwargs) -> DistributedDataParallel:
|
| 79 |
+
return DistributedDataParallel(
|
| 80 |
+
module=module,
|
| 81 |
+
device_ids=[get_local_rank()],
|
| 82 |
+
output_device=get_local_rank(),
|
| 83 |
+
**kwargs,
|
| 84 |
+
)
|
common/distributed/meta_init_utils.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from rotary_embedding_torch import RotaryEmbedding
|
| 17 |
+
from torch import nn
|
| 18 |
+
from torch.distributed.fsdp._common_utils import _is_fsdp_flattened
|
| 19 |
+
|
| 20 |
+
__all__ = ["meta_non_persistent_buffer_init_fn"]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def meta_non_persistent_buffer_init_fn(module: nn.Module) -> nn.Module:
|
| 24 |
+
"""
|
| 25 |
+
Used for materializing `non-persistent tensor buffers` while model resuming.
|
| 26 |
+
|
| 27 |
+
Since non-persistent tensor buffers are not saved in state_dict,
|
| 28 |
+
when initializing model with meta device, user should materialize those buffers manually.
|
| 29 |
+
|
| 30 |
+
Currently, only `rope.dummy` is this special case.
|
| 31 |
+
"""
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
for submodule in module.modules():
|
| 34 |
+
if not isinstance(submodule, RotaryEmbedding):
|
| 35 |
+
continue
|
| 36 |
+
for buffer_name, buffer in submodule.named_buffers(recurse=False):
|
| 37 |
+
if buffer.is_meta and "dummy" in buffer_name:
|
| 38 |
+
materialized_buffer = torch.zeros_like(buffer, device="cpu")
|
| 39 |
+
setattr(submodule, buffer_name, materialized_buffer)
|
| 40 |
+
assert not any(b.is_meta for n, b in module.named_buffers())
|
| 41 |
+
return module
|
common/distributed/ops.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Distributed ops for supporting sequence parallel.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from collections import defaultdict
|
| 20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 21 |
+
import torch
|
| 22 |
+
import torch.distributed as dist
|
| 23 |
+
from torch import Tensor
|
| 24 |
+
|
| 25 |
+
from common.cache import Cache
|
| 26 |
+
from common.distributed.advanced import (
|
| 27 |
+
get_sequence_parallel_group,
|
| 28 |
+
get_sequence_parallel_rank,
|
| 29 |
+
get_sequence_parallel_world_size,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
from .basic import get_device
|
| 33 |
+
|
| 34 |
+
_SEQ_DATA_BUF = defaultdict(lambda: [None, None, None])
|
| 35 |
+
_SEQ_DATA_META_SHAPES = defaultdict()
|
| 36 |
+
_SEQ_DATA_META_DTYPES = defaultdict()
|
| 37 |
+
_SEQ_DATA_ASYNC_COMMS = defaultdict(list)
|
| 38 |
+
_SYNC_BUFFER = defaultdict(dict)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def single_all_to_all(
|
| 42 |
+
local_input: Tensor,
|
| 43 |
+
scatter_dim: int,
|
| 44 |
+
gather_dim: int,
|
| 45 |
+
group: dist.ProcessGroup,
|
| 46 |
+
async_op: bool = False,
|
| 47 |
+
):
|
| 48 |
+
"""
|
| 49 |
+
A function to do all-to-all on a tensor
|
| 50 |
+
"""
|
| 51 |
+
seq_world_size = dist.get_world_size(group)
|
| 52 |
+
prev_scatter_dim = scatter_dim
|
| 53 |
+
if scatter_dim != 0:
|
| 54 |
+
local_input = local_input.transpose(0, scatter_dim)
|
| 55 |
+
if gather_dim == 0:
|
| 56 |
+
gather_dim = scatter_dim
|
| 57 |
+
scatter_dim = 0
|
| 58 |
+
|
| 59 |
+
inp_shape = list(local_input.shape)
|
| 60 |
+
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
|
| 61 |
+
input_t = local_input.reshape(
|
| 62 |
+
[seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :]
|
| 63 |
+
).contiguous()
|
| 64 |
+
output = torch.empty_like(input_t)
|
| 65 |
+
comm = dist.all_to_all_single(output, input_t, group=group, async_op=async_op)
|
| 66 |
+
if async_op:
|
| 67 |
+
# let user's code transpose & reshape
|
| 68 |
+
return output, comm, prev_scatter_dim
|
| 69 |
+
|
| 70 |
+
# first dim is seq_world_size, so we can split it directly
|
| 71 |
+
output = torch.cat(output.split(1), dim=gather_dim + 1).squeeze(0)
|
| 72 |
+
if prev_scatter_dim:
|
| 73 |
+
output = output.transpose(0, prev_scatter_dim).contiguous()
|
| 74 |
+
return output
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def _all_to_all(
|
| 78 |
+
local_input: Tensor,
|
| 79 |
+
scatter_dim: int,
|
| 80 |
+
gather_dim: int,
|
| 81 |
+
group: dist.ProcessGroup,
|
| 82 |
+
):
|
| 83 |
+
seq_world_size = dist.get_world_size(group)
|
| 84 |
+
input_list = [
|
| 85 |
+
t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)
|
| 86 |
+
]
|
| 87 |
+
output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
|
| 88 |
+
dist.all_to_all(output_list, input_list, group=group)
|
| 89 |
+
return torch.cat(output_list, dim=gather_dim).contiguous()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class SeqAllToAll(torch.autograd.Function):
|
| 93 |
+
@staticmethod
|
| 94 |
+
def forward(
|
| 95 |
+
ctx: Any,
|
| 96 |
+
group: dist.ProcessGroup,
|
| 97 |
+
local_input: Tensor,
|
| 98 |
+
scatter_dim: int,
|
| 99 |
+
gather_dim: int,
|
| 100 |
+
async_op: bool,
|
| 101 |
+
) -> Tensor:
|
| 102 |
+
ctx.group = group
|
| 103 |
+
ctx.scatter_dim = scatter_dim
|
| 104 |
+
ctx.gather_dim = gather_dim
|
| 105 |
+
ctx.async_op = async_op
|
| 106 |
+
if async_op:
|
| 107 |
+
output, comm, prev_scatter_dim = single_all_to_all(
|
| 108 |
+
local_input, scatter_dim, gather_dim, group, async_op=async_op
|
| 109 |
+
)
|
| 110 |
+
ctx.prev_scatter_dim = prev_scatter_dim
|
| 111 |
+
return output, comm
|
| 112 |
+
|
| 113 |
+
return _all_to_all(local_input, scatter_dim, gather_dim, group)
|
| 114 |
+
|
| 115 |
+
@staticmethod
|
| 116 |
+
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
|
| 117 |
+
if ctx.async_op:
|
| 118 |
+
input_t = torch.cat(grad_output[0].split(1), dim=ctx.gather_dim + 1).squeeze(0)
|
| 119 |
+
if ctx.prev_scatter_dim:
|
| 120 |
+
input_t = input_t.transpose(0, ctx.prev_scatter_dim)
|
| 121 |
+
else:
|
| 122 |
+
input_t = grad_output[0]
|
| 123 |
+
return (
|
| 124 |
+
None,
|
| 125 |
+
_all_to_all(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group),
|
| 126 |
+
None,
|
| 127 |
+
None,
|
| 128 |
+
None,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class Slice(torch.autograd.Function):
|
| 133 |
+
@staticmethod
|
| 134 |
+
def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int) -> Tensor:
|
| 135 |
+
ctx.group = group
|
| 136 |
+
ctx.rank = dist.get_rank(group)
|
| 137 |
+
seq_world_size = dist.get_world_size(group)
|
| 138 |
+
ctx.seq_world_size = seq_world_size
|
| 139 |
+
ctx.dim = dim
|
| 140 |
+
dim_size = local_input.shape[dim]
|
| 141 |
+
return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()
|
| 142 |
+
|
| 143 |
+
@staticmethod
|
| 144 |
+
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
|
| 145 |
+
dim_size = list(grad_output.size())
|
| 146 |
+
split_size = dim_size[0]
|
| 147 |
+
dim_size[0] = dim_size[0] * ctx.seq_world_size
|
| 148 |
+
output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
|
| 149 |
+
dist._all_gather_base(output, grad_output, group=ctx.group)
|
| 150 |
+
return (None, torch.cat(output.split(split_size), dim=ctx.dim), None)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class Gather(torch.autograd.Function):
|
| 154 |
+
@staticmethod
|
| 155 |
+
def forward(
|
| 156 |
+
ctx: Any,
|
| 157 |
+
group: dist.ProcessGroup,
|
| 158 |
+
local_input: Tensor,
|
| 159 |
+
dim: int,
|
| 160 |
+
grad_scale: Optional[bool] = False,
|
| 161 |
+
) -> Tensor:
|
| 162 |
+
ctx.group = group
|
| 163 |
+
ctx.rank = dist.get_rank(group)
|
| 164 |
+
ctx.dim = dim
|
| 165 |
+
ctx.grad_scale = grad_scale
|
| 166 |
+
seq_world_size = dist.get_world_size(group)
|
| 167 |
+
ctx.seq_world_size = seq_world_size
|
| 168 |
+
dim_size = list(local_input.size())
|
| 169 |
+
split_size = dim_size[0]
|
| 170 |
+
ctx.part_size = dim_size[dim]
|
| 171 |
+
dim_size[0] = dim_size[0] * seq_world_size
|
| 172 |
+
output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
|
| 173 |
+
dist._all_gather_base(output, local_input.contiguous(), group=ctx.group)
|
| 174 |
+
return torch.cat(output.split(split_size), dim=dim)
|
| 175 |
+
|
| 176 |
+
@staticmethod
|
| 177 |
+
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
|
| 178 |
+
if ctx.grad_scale:
|
| 179 |
+
grad_output = grad_output * ctx.seq_world_size
|
| 180 |
+
return (
|
| 181 |
+
None,
|
| 182 |
+
grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
|
| 183 |
+
None,
|
| 184 |
+
None,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def gather_seq_scatter_heads_qkv(
|
| 189 |
+
qkv_tensor: Tensor,
|
| 190 |
+
*,
|
| 191 |
+
seq_dim: int,
|
| 192 |
+
qkv_shape: Optional[Tensor] = None,
|
| 193 |
+
cache: Cache = Cache(disable=True),
|
| 194 |
+
restore_shape: bool = True,
|
| 195 |
+
):
|
| 196 |
+
"""
|
| 197 |
+
A func to sync splited qkv tensor
|
| 198 |
+
qkv_tensor: the tensor we want to do alltoall with. The last dim must
|
| 199 |
+
be the projection_idx, which we will split into 3 part. After
|
| 200 |
+
spliting, the gather idx will be projecttion_idx + 1
|
| 201 |
+
seq_dim: gather_dim for all2all comm
|
| 202 |
+
restore_shape: if True, output will has the same shape length as input
|
| 203 |
+
"""
|
| 204 |
+
group = get_sequence_parallel_group()
|
| 205 |
+
if not group:
|
| 206 |
+
return qkv_tensor
|
| 207 |
+
world = get_sequence_parallel_world_size()
|
| 208 |
+
orig_shape = qkv_tensor.shape
|
| 209 |
+
scatter_dim = qkv_tensor.dim()
|
| 210 |
+
bef_all2all_shape = list(orig_shape)
|
| 211 |
+
qkv_proj_dim = bef_all2all_shape[-1]
|
| 212 |
+
bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
|
| 213 |
+
qkv_tensor = qkv_tensor.view(bef_all2all_shape)
|
| 214 |
+
qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, False)
|
| 215 |
+
if restore_shape:
|
| 216 |
+
out_shape = list(orig_shape)
|
| 217 |
+
out_shape[seq_dim] *= world
|
| 218 |
+
out_shape[-1] = qkv_proj_dim // world
|
| 219 |
+
qkv_tensor = qkv_tensor.view(out_shape)
|
| 220 |
+
|
| 221 |
+
# remove padding
|
| 222 |
+
if qkv_shape is not None:
|
| 223 |
+
unpad_dim_size = cache(
|
| 224 |
+
"unpad_dim_size", lambda: torch.sum(torch.prod(qkv_shape, dim=-1)).item()
|
| 225 |
+
)
|
| 226 |
+
if unpad_dim_size % world != 0:
|
| 227 |
+
padding_size = qkv_tensor.size(seq_dim) - unpad_dim_size
|
| 228 |
+
qkv_tensor = _unpad_tensor(qkv_tensor, seq_dim, padding_size)
|
| 229 |
+
return qkv_tensor
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def slice_inputs(x: Tensor, dim: int, padding: bool = True):
|
| 233 |
+
"""
|
| 234 |
+
A func to slice the input sequence in sequence parallel
|
| 235 |
+
"""
|
| 236 |
+
group = get_sequence_parallel_group()
|
| 237 |
+
if group is None:
|
| 238 |
+
return x
|
| 239 |
+
sp_rank = get_sequence_parallel_rank()
|
| 240 |
+
sp_world = get_sequence_parallel_world_size()
|
| 241 |
+
dim_size = x.shape[dim]
|
| 242 |
+
unit = (dim_size + sp_world - 1) // sp_world
|
| 243 |
+
if padding and dim_size % sp_world:
|
| 244 |
+
padding_size = sp_world - (dim_size % sp_world)
|
| 245 |
+
x = _pad_tensor(x, dim, padding_size)
|
| 246 |
+
slc = [slice(None)] * len(x.shape)
|
| 247 |
+
slc[dim] = slice(unit * sp_rank, unit * (sp_rank + 1))
|
| 248 |
+
return x[slc]
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def remove_seqeunce_parallel_padding(x: Tensor, dim: int, unpad_dim_size: int):
|
| 252 |
+
"""
|
| 253 |
+
A func to remove the padding part of the tensor based on its original shape
|
| 254 |
+
"""
|
| 255 |
+
group = get_sequence_parallel_group()
|
| 256 |
+
if group is None:
|
| 257 |
+
return x
|
| 258 |
+
sp_world = get_sequence_parallel_world_size()
|
| 259 |
+
if unpad_dim_size % sp_world == 0:
|
| 260 |
+
return x
|
| 261 |
+
padding_size = sp_world - (unpad_dim_size % sp_world)
|
| 262 |
+
assert (padding_size + unpad_dim_size) % sp_world == 0
|
| 263 |
+
return _unpad_tensor(x, dim=dim, padding_size=padding_size)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
|
| 267 |
+
"""
|
| 268 |
+
A func to sync attention result with alltoall in sequence parallel
|
| 269 |
+
"""
|
| 270 |
+
group = get_sequence_parallel_group()
|
| 271 |
+
if not group:
|
| 272 |
+
return x
|
| 273 |
+
dim_size = x.size(seq_dim)
|
| 274 |
+
sp_world = get_sequence_parallel_world_size()
|
| 275 |
+
if dim_size % sp_world != 0:
|
| 276 |
+
padding_size = sp_world - (dim_size % sp_world)
|
| 277 |
+
x = _pad_tensor(x, seq_dim, padding_size)
|
| 278 |
+
return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def gather_seq_scatter_heads(x: Tensor, seq_dim: int, head_dim: int) -> Tensor:
|
| 282 |
+
"""
|
| 283 |
+
A func to sync embedding input with alltoall in sequence parallel
|
| 284 |
+
"""
|
| 285 |
+
group = get_sequence_parallel_group()
|
| 286 |
+
if not group:
|
| 287 |
+
return x
|
| 288 |
+
return SeqAllToAll.apply(group, x, head_dim, seq_dim, False)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def scatter_heads(x: Tensor, dim: int) -> Tensor:
|
| 292 |
+
"""
|
| 293 |
+
A func to split heads before attention in sequence parallel
|
| 294 |
+
"""
|
| 295 |
+
group = get_sequence_parallel_group()
|
| 296 |
+
if not group:
|
| 297 |
+
return x
|
| 298 |
+
return Slice.apply(group, x, dim)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def gather_heads(x: Tensor, dim: int, grad_scale: Optional[bool] = False) -> Tensor:
|
| 302 |
+
"""
|
| 303 |
+
A func to gather heads for the attention result in sequence parallel
|
| 304 |
+
"""
|
| 305 |
+
group = get_sequence_parallel_group()
|
| 306 |
+
if not group:
|
| 307 |
+
return x
|
| 308 |
+
return Gather.apply(group, x, dim, grad_scale)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def gather_outputs(
|
| 312 |
+
x: Tensor,
|
| 313 |
+
*,
|
| 314 |
+
gather_dim: int,
|
| 315 |
+
padding_dim: Optional[int] = None,
|
| 316 |
+
unpad_shape: Optional[Tensor] = None,
|
| 317 |
+
cache: Cache = Cache(disable=True),
|
| 318 |
+
scale_grad=True,
|
| 319 |
+
):
|
| 320 |
+
"""
|
| 321 |
+
A func to gather the outputs for the model result in sequence parallel
|
| 322 |
+
"""
|
| 323 |
+
group = get_sequence_parallel_group()
|
| 324 |
+
if not group:
|
| 325 |
+
return x
|
| 326 |
+
x = Gather.apply(group, x, gather_dim, scale_grad)
|
| 327 |
+
if padding_dim is not None:
|
| 328 |
+
unpad_dim_size = cache(
|
| 329 |
+
"unpad_dim_size", lambda: torch.sum(torch.prod(unpad_shape, dim=1)).item()
|
| 330 |
+
)
|
| 331 |
+
x = remove_seqeunce_parallel_padding(x, padding_dim, unpad_dim_size)
|
| 332 |
+
return x
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _pad_tensor(x: Tensor, dim: int, padding_size: int):
|
| 336 |
+
shape = list(x.shape)
|
| 337 |
+
shape[dim] = padding_size
|
| 338 |
+
pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
|
| 339 |
+
return torch.cat([x, pad], dim=dim)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def _unpad_tensor(x: Tensor, dim: int, padding_size):
|
| 343 |
+
slc = [slice(None)] * len(x.shape)
|
| 344 |
+
slc[dim] = slice(0, -padding_size)
|
| 345 |
+
return x[slc]
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def _broadcast_data(data, shape, dtype, src, group, async_op):
|
| 349 |
+
comms = []
|
| 350 |
+
if isinstance(data, (list, tuple)):
|
| 351 |
+
for i, sub_shape in enumerate(shape):
|
| 352 |
+
comms += _broadcast_data(data[i], sub_shape, dtype[i], src, group, async_op)
|
| 353 |
+
elif isinstance(data, dict):
|
| 354 |
+
for key, sub_data in data.items():
|
| 355 |
+
comms += _broadcast_data(sub_data, shape[key], dtype[key], src, group, async_op)
|
| 356 |
+
elif isinstance(data, Tensor):
|
| 357 |
+
comms.append(dist.broadcast(data, src=src, group=group, async_op=async_op))
|
| 358 |
+
return comms
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _traverse(data: Any, op: Callable) -> Union[None, List, Dict, Any]:
|
| 362 |
+
if isinstance(data, (list, tuple)):
|
| 363 |
+
return [_traverse(sub_data, op) for sub_data in data]
|
| 364 |
+
elif isinstance(data, dict):
|
| 365 |
+
return {key: _traverse(sub_data, op) for key, sub_data in data.items()}
|
| 366 |
+
elif isinstance(data, Tensor):
|
| 367 |
+
return op(data)
|
| 368 |
+
else:
|
| 369 |
+
return None
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def _get_shapes(data):
|
| 373 |
+
return _traverse(data, op=lambda x: x.shape)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def _get_dtypes(data):
|
| 377 |
+
return _traverse(data, op=lambda x: x.dtype)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def _construct_broadcast_buffer(shapes, dtypes, device):
|
| 381 |
+
if isinstance(shapes, torch.Size):
|
| 382 |
+
return torch.empty(shapes, dtype=dtypes, device=device)
|
| 383 |
+
|
| 384 |
+
if isinstance(shapes, (list, tuple)):
|
| 385 |
+
buffer = []
|
| 386 |
+
for i, sub_shape in enumerate(shapes):
|
| 387 |
+
buffer.append(_construct_broadcast_buffer(sub_shape, dtypes[i], device))
|
| 388 |
+
elif isinstance(shapes, dict):
|
| 389 |
+
buffer = {}
|
| 390 |
+
for key, sub_shape in shapes.items():
|
| 391 |
+
buffer[key] = _construct_broadcast_buffer(sub_shape, dtypes[key], device)
|
| 392 |
+
else:
|
| 393 |
+
return None
|
| 394 |
+
return buffer
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class SPDistForward:
|
| 398 |
+
"""A forward tool to sync different result across sp group
|
| 399 |
+
|
| 400 |
+
Args:
|
| 401 |
+
module: a function or module to process users input
|
| 402 |
+
sp_step: current training step to judge which rank to broadcast its result to all
|
| 403 |
+
name: a distinct str to save meta and async comm
|
| 404 |
+
comm_shape: if different ranks have different shape, mark this arg to True
|
| 405 |
+
device: the device for current rank, can be empty
|
| 406 |
+
"""
|
| 407 |
+
|
| 408 |
+
def __init__(
|
| 409 |
+
self,
|
| 410 |
+
name: str,
|
| 411 |
+
comm_shape: bool,
|
| 412 |
+
device: torch.device = None,
|
| 413 |
+
):
|
| 414 |
+
self.name = name
|
| 415 |
+
self.comm_shape = comm_shape
|
| 416 |
+
if device:
|
| 417 |
+
self.device = device
|
| 418 |
+
else:
|
| 419 |
+
self.device = get_device()
|
| 420 |
+
|
| 421 |
+
def __call__(self, inputs) -> Any:
|
| 422 |
+
group = get_sequence_parallel_group()
|
| 423 |
+
if not group:
|
| 424 |
+
yield inputs
|
| 425 |
+
else:
|
| 426 |
+
device = self.device
|
| 427 |
+
sp_world = get_sequence_parallel_world_size()
|
| 428 |
+
sp_rank = get_sequence_parallel_rank()
|
| 429 |
+
for local_step in range(sp_world):
|
| 430 |
+
src_rank = dist.get_global_rank(group, local_step)
|
| 431 |
+
is_src = sp_rank == local_step
|
| 432 |
+
local_shapes = []
|
| 433 |
+
local_dtypes = []
|
| 434 |
+
if local_step == 0:
|
| 435 |
+
local_result = inputs
|
| 436 |
+
_SEQ_DATA_BUF[self.name][-1] = local_result
|
| 437 |
+
local_shapes = _get_shapes(local_result)
|
| 438 |
+
local_dtypes = _get_dtypes(local_result)
|
| 439 |
+
if self.comm_shape:
|
| 440 |
+
group_shapes_lists = [None] * sp_world
|
| 441 |
+
dist.all_gather_object(group_shapes_lists, local_shapes, group=group)
|
| 442 |
+
_SEQ_DATA_META_SHAPES[self.name] = group_shapes_lists
|
| 443 |
+
else:
|
| 444 |
+
_SEQ_DATA_META_SHAPES[self.name] = [local_shapes] * sp_world
|
| 445 |
+
_SEQ_DATA_META_DTYPES[self.name] = local_dtypes
|
| 446 |
+
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step]
|
| 447 |
+
dtypes = _SEQ_DATA_META_DTYPES[self.name]
|
| 448 |
+
buf_id = local_step % 2
|
| 449 |
+
if local_step == 0:
|
| 450 |
+
sync_data = (
|
| 451 |
+
local_result
|
| 452 |
+
if is_src
|
| 453 |
+
else _construct_broadcast_buffer(shapes, dtypes, device)
|
| 454 |
+
)
|
| 455 |
+
_broadcast_data(sync_data, shapes, dtypes, src_rank, group, False)
|
| 456 |
+
_SEQ_DATA_BUF[self.name][buf_id] = sync_data
|
| 457 |
+
|
| 458 |
+
# wait for async comm ops
|
| 459 |
+
if _SEQ_DATA_ASYNC_COMMS[self.name]:
|
| 460 |
+
for comm in _SEQ_DATA_ASYNC_COMMS[self.name]:
|
| 461 |
+
comm.wait()
|
| 462 |
+
# before return the sync result, do async broadcast for next batch
|
| 463 |
+
if local_step < sp_world - 1:
|
| 464 |
+
next_buf_id = 1 - buf_id
|
| 465 |
+
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step + 1]
|
| 466 |
+
src_rank = dist.get_global_rank(group, local_step + 1)
|
| 467 |
+
is_src = sp_rank == local_step + 1
|
| 468 |
+
next_sync_data = (
|
| 469 |
+
_SEQ_DATA_BUF[self.name][-1]
|
| 470 |
+
if is_src
|
| 471 |
+
else _construct_broadcast_buffer(shapes, dtypes, device)
|
| 472 |
+
)
|
| 473 |
+
_SEQ_DATA_ASYNC_COMMS[self.name] = _broadcast_data(
|
| 474 |
+
next_sync_data, shapes, dtypes, src_rank, group, True
|
| 475 |
+
)
|
| 476 |
+
_SEQ_DATA_BUF[self.name][next_buf_id] = next_sync_data
|
| 477 |
+
yield _SEQ_DATA_BUF[self.name][buf_id]
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
sync_inputs = SPDistForward(name="bef_fwd", comm_shape=True)
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def sync_data(data, sp_idx, name="tmp"):
|
| 484 |
+
group = get_sequence_parallel_group()
|
| 485 |
+
if group is None:
|
| 486 |
+
return data
|
| 487 |
+
# if sp_idx in _SYNC_BUFFER[name]:
|
| 488 |
+
# return _SYNC_BUFFER[name][sp_idx]
|
| 489 |
+
sp_rank = get_sequence_parallel_rank()
|
| 490 |
+
src_rank = dist.get_global_rank(group, sp_idx)
|
| 491 |
+
objects = [data] if sp_rank == sp_idx else [None]
|
| 492 |
+
dist.broadcast_object_list(objects, src=src_rank, group=group)
|
| 493 |
+
# _SYNC_BUFFER[name] = {sp_idx: objects[0]}
|
| 494 |
+
return objects[0]
|
common/logger.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Logging utility functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import logging
|
| 20 |
+
import sys
|
| 21 |
+
from typing import Optional
|
| 22 |
+
|
| 23 |
+
from common.distributed import get_global_rank, get_local_rank, get_world_size
|
| 24 |
+
|
| 25 |
+
_default_handler = logging.StreamHandler(sys.stdout)
|
| 26 |
+
_default_handler.setFormatter(
|
| 27 |
+
logging.Formatter(
|
| 28 |
+
"%(asctime)s "
|
| 29 |
+
+ (f"[Rank:{get_global_rank()}]" if get_world_size() > 1 else "")
|
| 30 |
+
+ (f"[LocalRank:{get_local_rank()}]" if get_world_size() > 1 else "")
|
| 31 |
+
+ "[%(threadName).12s][%(name)s][%(levelname).5s] "
|
| 32 |
+
+ "%(message)s"
|
| 33 |
+
)
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_logger(name: Optional[str] = None) -> logging.Logger:
|
| 38 |
+
"""
|
| 39 |
+
Get a logger.
|
| 40 |
+
"""
|
| 41 |
+
logger = logging.getLogger(name)
|
| 42 |
+
logger.addHandler(_default_handler)
|
| 43 |
+
logger.setLevel(logging.INFO)
|
| 44 |
+
return logger
|
common/partition.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Partition utility functions.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import Any, List
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def partition_by_size(data: List[Any], size: int) -> List[List[Any]]:
|
| 23 |
+
"""
|
| 24 |
+
Partition a list by size.
|
| 25 |
+
When indivisible, the last group contains fewer items than the target size.
|
| 26 |
+
|
| 27 |
+
Examples:
|
| 28 |
+
- data: [1,2,3,4,5]
|
| 29 |
+
- size: 2
|
| 30 |
+
- return: [[1,2], [3,4], [5]]
|
| 31 |
+
"""
|
| 32 |
+
assert size > 0
|
| 33 |
+
return [data[i : (i + size)] for i in range(0, len(data), size)]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def partition_by_groups(data: List[Any], groups: int) -> List[List[Any]]:
|
| 37 |
+
"""
|
| 38 |
+
Partition a list by groups.
|
| 39 |
+
When indivisible, some groups may have more items than others.
|
| 40 |
+
|
| 41 |
+
Examples:
|
| 42 |
+
- data: [1,2,3,4,5]
|
| 43 |
+
- groups: 2
|
| 44 |
+
- return: [[1,3,5], [2,4]]
|
| 45 |
+
"""
|
| 46 |
+
assert groups > 0
|
| 47 |
+
return [data[i::groups] for i in range(groups)]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def shift_list(data: List[Any], n: int) -> List[Any]:
|
| 51 |
+
"""
|
| 52 |
+
Rotate a list by n elements.
|
| 53 |
+
|
| 54 |
+
Examples:
|
| 55 |
+
- data: [1,2,3,4,5]
|
| 56 |
+
- n: 3
|
| 57 |
+
- return: [4,5,1,2,3]
|
| 58 |
+
"""
|
| 59 |
+
return data[(n % len(data)) :] + data[: (n % len(data))]
|
common/seed.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import random
|
| 16 |
+
from typing import Optional
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
from common.distributed import get_global_rank
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def set_seed(seed: Optional[int], same_across_ranks: bool = False):
|
| 24 |
+
"""Function that sets the seed for pseudo-random number generators."""
|
| 25 |
+
if seed is not None:
|
| 26 |
+
seed += get_global_rank() if not same_across_ranks else 0
|
| 27 |
+
random.seed(seed)
|
| 28 |
+
np.random.seed(seed)
|
| 29 |
+
torch.manual_seed(seed)
|
| 30 |
+
|
configs_3b/main.yaml
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__object__:
|
| 2 |
+
path: projects.video_diffusion_sr.train
|
| 3 |
+
name: VideoDiffusionTrainer
|
| 4 |
+
|
| 5 |
+
dit:
|
| 6 |
+
model:
|
| 7 |
+
__object__:
|
| 8 |
+
path: models.dit_v2.nadit
|
| 9 |
+
name: NaDiT
|
| 10 |
+
args: as_params
|
| 11 |
+
vid_in_channels: 33
|
| 12 |
+
vid_out_channels: 16
|
| 13 |
+
vid_dim: 2560
|
| 14 |
+
vid_out_norm: fusedrms
|
| 15 |
+
txt_in_dim: 5120
|
| 16 |
+
txt_in_norm: fusedln
|
| 17 |
+
txt_dim: ${.vid_dim}
|
| 18 |
+
emb_dim: ${eval:'6 * ${.vid_dim}'}
|
| 19 |
+
heads: 20
|
| 20 |
+
head_dim: 128 # llm-like
|
| 21 |
+
expand_ratio: 4
|
| 22 |
+
norm: fusedrms
|
| 23 |
+
norm_eps: 1.0e-05
|
| 24 |
+
ada: single
|
| 25 |
+
qk_bias: False
|
| 26 |
+
qk_norm: fusedrms
|
| 27 |
+
patch_size: [ 1,2,2 ]
|
| 28 |
+
num_layers: 32 # llm-like
|
| 29 |
+
mm_layers: 10
|
| 30 |
+
mlp_type: swiglu
|
| 31 |
+
msa_type: None
|
| 32 |
+
block_type: ${eval:'${.num_layers} * ["mmdit_sr"]'} # space-full
|
| 33 |
+
window: ${eval:'${.num_layers} * [(4,3,3)]'} # space-full
|
| 34 |
+
window_method: ${eval:'${.num_layers} // 2 * ["720pwin_by_size_bysize","720pswin_by_size_bysize"]'} # space-full
|
| 35 |
+
rope_type: mmrope3d
|
| 36 |
+
rope_dim: 128
|
| 37 |
+
compile: False
|
| 38 |
+
gradient_checkpoint: True
|
| 39 |
+
fsdp:
|
| 40 |
+
sharding_strategy: _HYBRID_SHARD_ZERO2
|
| 41 |
+
|
| 42 |
+
ema:
|
| 43 |
+
decay: 0.9998
|
| 44 |
+
|
| 45 |
+
vae:
|
| 46 |
+
model:
|
| 47 |
+
__inherit__: models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml
|
| 48 |
+
freeze_encoder: False
|
| 49 |
+
# gradient_checkpoint: True
|
| 50 |
+
slicing:
|
| 51 |
+
split_size: 4
|
| 52 |
+
memory_device: same
|
| 53 |
+
memory_limit:
|
| 54 |
+
conv_max_mem: 0.5
|
| 55 |
+
norm_max_mem: 0.5
|
| 56 |
+
checkpoint: ./ckpts/ema_vae.pth
|
| 57 |
+
scaling_factor: 0.9152
|
| 58 |
+
compile: False
|
| 59 |
+
grouping: False
|
| 60 |
+
dtype: bfloat16
|
| 61 |
+
|
| 62 |
+
diffusion:
|
| 63 |
+
schedule:
|
| 64 |
+
type: lerp
|
| 65 |
+
T: 1000.0
|
| 66 |
+
sampler:
|
| 67 |
+
type: euler
|
| 68 |
+
prediction_type: v_lerp
|
| 69 |
+
timesteps:
|
| 70 |
+
training:
|
| 71 |
+
type: logitnormal
|
| 72 |
+
loc: 0.0
|
| 73 |
+
scale: 1.0
|
| 74 |
+
sampling:
|
| 75 |
+
type: uniform_trailing
|
| 76 |
+
steps: 50
|
| 77 |
+
transform: True
|
| 78 |
+
loss:
|
| 79 |
+
type: v_lerp
|
| 80 |
+
cfg:
|
| 81 |
+
scale: 7.5
|
| 82 |
+
rescale: 0
|
| 83 |
+
|
| 84 |
+
condition:
|
| 85 |
+
i2v: 0.0
|
| 86 |
+
v2v: 0.0
|
| 87 |
+
sr: 1.0
|
| 88 |
+
noise_scale: 0.25
|
configs_7b/main.yaml
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__object__:
|
| 2 |
+
path: projects.video_diffusion_sr.train
|
| 3 |
+
name: VideoDiffusionTrainer
|
| 4 |
+
|
| 5 |
+
dit:
|
| 6 |
+
model:
|
| 7 |
+
__object__:
|
| 8 |
+
path: models.dit.nadit
|
| 9 |
+
name: NaDiT
|
| 10 |
+
args: as_params
|
| 11 |
+
vid_in_channels: 33
|
| 12 |
+
vid_out_channels: 16
|
| 13 |
+
vid_dim: 3072
|
| 14 |
+
txt_in_dim: 5120
|
| 15 |
+
txt_dim: ${.vid_dim}
|
| 16 |
+
emb_dim: ${eval:'6 * ${.vid_dim}'}
|
| 17 |
+
heads: 24
|
| 18 |
+
head_dim: 128 # llm-like
|
| 19 |
+
expand_ratio: 4
|
| 20 |
+
norm: fusedrms
|
| 21 |
+
norm_eps: 1e-5
|
| 22 |
+
ada: single
|
| 23 |
+
qk_bias: False
|
| 24 |
+
qk_rope: True
|
| 25 |
+
qk_norm: fusedrms
|
| 26 |
+
patch_size: [ 1,2,2 ]
|
| 27 |
+
num_layers: 36 # llm-like
|
| 28 |
+
shared_mlp: False
|
| 29 |
+
shared_qkv: False
|
| 30 |
+
mlp_type: normal
|
| 31 |
+
block_type: ${eval:'${.num_layers} * ["mmdit_sr"]'} # space-full
|
| 32 |
+
window: ${eval:'${.num_layers} * [(4,3,3)]'} # space-full
|
| 33 |
+
window_method: ${eval:'${.num_layers} // 2 * ["720pwin_by_size_bysize","720pswin_by_size_bysize"]'} # space-full
|
| 34 |
+
compile: False
|
| 35 |
+
gradient_checkpoint: True
|
| 36 |
+
fsdp:
|
| 37 |
+
sharding_strategy: _HYBRID_SHARD_ZERO2
|
| 38 |
+
|
| 39 |
+
ema:
|
| 40 |
+
decay: 0.9998
|
| 41 |
+
|
| 42 |
+
vae:
|
| 43 |
+
model:
|
| 44 |
+
__inherit__: models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml
|
| 45 |
+
freeze_encoder: False
|
| 46 |
+
# gradient_checkpoint: True
|
| 47 |
+
slicing:
|
| 48 |
+
split_size: 4
|
| 49 |
+
memory_device: same
|
| 50 |
+
memory_limit:
|
| 51 |
+
conv_max_mem: 0.5
|
| 52 |
+
norm_max_mem: 0.5
|
| 53 |
+
checkpoint: ./ckpts/ema_vae.pth
|
| 54 |
+
scaling_factor: 0.9152
|
| 55 |
+
compile: False
|
| 56 |
+
grouping: False
|
| 57 |
+
dtype: bfloat16
|
| 58 |
+
|
| 59 |
+
diffusion:
|
| 60 |
+
schedule:
|
| 61 |
+
type: lerp
|
| 62 |
+
T: 1000.0
|
| 63 |
+
sampler:
|
| 64 |
+
type: euler
|
| 65 |
+
prediction_type: v_lerp
|
| 66 |
+
timesteps:
|
| 67 |
+
training:
|
| 68 |
+
type: logitnormal
|
| 69 |
+
loc: 0.0
|
| 70 |
+
scale: 1.0
|
| 71 |
+
sampling:
|
| 72 |
+
type: uniform_trailing
|
| 73 |
+
steps: 50
|
| 74 |
+
transform: True
|
| 75 |
+
loss:
|
| 76 |
+
type: v_lerp
|
| 77 |
+
cfg:
|
| 78 |
+
scale: 7.5
|
| 79 |
+
rescale: 0
|
| 80 |
+
|
| 81 |
+
condition:
|
| 82 |
+
i2v: 0.0
|
| 83 |
+
v2v: 0.0
|
| 84 |
+
sr: 1.0
|
| 85 |
+
noise_scale: 0.25
|
data/image/transforms/area_resize.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
import random
|
| 17 |
+
from typing import Union
|
| 18 |
+
import torch
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from torchvision.transforms import functional as TVF
|
| 21 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class AreaResize:
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
max_area: float,
|
| 28 |
+
downsample_only: bool = False,
|
| 29 |
+
interpolation: InterpolationMode = InterpolationMode.BICUBIC,
|
| 30 |
+
):
|
| 31 |
+
self.max_area = max_area
|
| 32 |
+
self.downsample_only = downsample_only
|
| 33 |
+
self.interpolation = interpolation
|
| 34 |
+
|
| 35 |
+
def __call__(self, image: Union[torch.Tensor, Image.Image]):
|
| 36 |
+
|
| 37 |
+
if isinstance(image, torch.Tensor):
|
| 38 |
+
height, width = image.shape[-2:]
|
| 39 |
+
elif isinstance(image, Image.Image):
|
| 40 |
+
width, height = image.size
|
| 41 |
+
else:
|
| 42 |
+
raise NotImplementedError
|
| 43 |
+
|
| 44 |
+
scale = math.sqrt(self.max_area / (height * width))
|
| 45 |
+
|
| 46 |
+
# keep original height and width for small pictures.
|
| 47 |
+
scale = 1 if scale >= 1 and self.downsample_only else scale
|
| 48 |
+
|
| 49 |
+
resized_height, resized_width = round(height * scale), round(width * scale)
|
| 50 |
+
|
| 51 |
+
return TVF.resize(
|
| 52 |
+
image,
|
| 53 |
+
size=(resized_height, resized_width),
|
| 54 |
+
interpolation=self.interpolation,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class AreaRandomCrop:
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
max_area: float,
|
| 62 |
+
):
|
| 63 |
+
self.max_area = max_area
|
| 64 |
+
|
| 65 |
+
def get_params(self, input_size, output_size):
|
| 66 |
+
"""Get parameters for ``crop`` for a random crop.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
img (PIL Image): Image to be cropped.
|
| 70 |
+
output_size (tuple): Expected output size of the crop.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
|
| 74 |
+
"""
|
| 75 |
+
# w, h = _get_image_size(img)
|
| 76 |
+
h, w = input_size
|
| 77 |
+
th, tw = output_size
|
| 78 |
+
if w <= tw and h <= th:
|
| 79 |
+
return 0, 0, h, w
|
| 80 |
+
|
| 81 |
+
i = random.randint(0, h - th)
|
| 82 |
+
j = random.randint(0, w - tw)
|
| 83 |
+
return i, j, th, tw
|
| 84 |
+
|
| 85 |
+
def __call__(self, image: Union[torch.Tensor, Image.Image]):
|
| 86 |
+
if isinstance(image, torch.Tensor):
|
| 87 |
+
height, width = image.shape[-2:]
|
| 88 |
+
elif isinstance(image, Image.Image):
|
| 89 |
+
width, height = image.size
|
| 90 |
+
else:
|
| 91 |
+
raise NotImplementedError
|
| 92 |
+
|
| 93 |
+
resized_height = math.sqrt(self.max_area / (width / height))
|
| 94 |
+
resized_width = (width / height) * resized_height
|
| 95 |
+
|
| 96 |
+
# print('>>>>>>>>>>>>>>>>>>>>>')
|
| 97 |
+
# print((height, width))
|
| 98 |
+
# print( (resized_height, resized_width))
|
| 99 |
+
|
| 100 |
+
resized_height, resized_width = round(resized_height), round(resized_width)
|
| 101 |
+
i, j, h, w = self.get_params((height, width), (resized_height, resized_width))
|
| 102 |
+
image = TVF.crop(image, i, j, h, w)
|
| 103 |
+
return image
|
| 104 |
+
|
| 105 |
+
class ScaleResize:
|
| 106 |
+
def __init__(
|
| 107 |
+
self,
|
| 108 |
+
scale: float,
|
| 109 |
+
):
|
| 110 |
+
self.scale = scale
|
| 111 |
+
|
| 112 |
+
def __call__(self, image: Union[torch.Tensor, Image.Image]):
|
| 113 |
+
if isinstance(image, torch.Tensor):
|
| 114 |
+
height, width = image.shape[-2:]
|
| 115 |
+
interpolation_mode = InterpolationMode.BILINEAR
|
| 116 |
+
antialias = True if image.ndim == 4 else "warn"
|
| 117 |
+
elif isinstance(image, Image.Image):
|
| 118 |
+
width, height = image.size
|
| 119 |
+
interpolation_mode = InterpolationMode.LANCZOS
|
| 120 |
+
antialias = "warn"
|
| 121 |
+
else:
|
| 122 |
+
raise NotImplementedError
|
| 123 |
+
|
| 124 |
+
scale = self.scale
|
| 125 |
+
|
| 126 |
+
# keep original height and width for small pictures
|
| 127 |
+
|
| 128 |
+
resized_height, resized_width = round(height * scale), round(width * scale)
|
| 129 |
+
image = TVF.resize(
|
| 130 |
+
image,
|
| 131 |
+
size=(resized_height, resized_width),
|
| 132 |
+
interpolation=interpolation_mode,
|
| 133 |
+
antialias=antialias,
|
| 134 |
+
)
|
| 135 |
+
return image
|
data/image/transforms/divisible_crop.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Union
|
| 16 |
+
import torch
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from torchvision.transforms import functional as TVF
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class DivisibleCrop:
|
| 22 |
+
def __init__(self, factor):
|
| 23 |
+
if not isinstance(factor, tuple):
|
| 24 |
+
factor = (factor, factor)
|
| 25 |
+
|
| 26 |
+
self.height_factor, self.width_factor = factor[0], factor[1]
|
| 27 |
+
|
| 28 |
+
def __call__(self, image: Union[torch.Tensor, Image.Image]):
|
| 29 |
+
if isinstance(image, torch.Tensor):
|
| 30 |
+
height, width = image.shape[-2:]
|
| 31 |
+
elif isinstance(image, Image.Image):
|
| 32 |
+
width, height = image.size
|
| 33 |
+
else:
|
| 34 |
+
raise NotImplementedError
|
| 35 |
+
|
| 36 |
+
cropped_height = height - (height % self.height_factor)
|
| 37 |
+
cropped_width = width - (width % self.width_factor)
|
| 38 |
+
|
| 39 |
+
image = TVF.center_crop(img=image, output_size=(cropped_height, cropped_width))
|
| 40 |
+
return image
|
data/image/transforms/na_resize.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Literal
|
| 16 |
+
from torchvision.transforms import CenterCrop, Compose, InterpolationMode, Resize
|
| 17 |
+
|
| 18 |
+
from .area_resize import AreaResize
|
| 19 |
+
from .side_resize import SideResize
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def NaResize(
|
| 23 |
+
resolution: int,
|
| 24 |
+
mode: Literal["area", "side"],
|
| 25 |
+
downsample_only: bool,
|
| 26 |
+
interpolation: InterpolationMode = InterpolationMode.BICUBIC,
|
| 27 |
+
):
|
| 28 |
+
if mode == "area":
|
| 29 |
+
return AreaResize(
|
| 30 |
+
max_area=resolution**2,
|
| 31 |
+
downsample_only=downsample_only,
|
| 32 |
+
interpolation=interpolation,
|
| 33 |
+
)
|
| 34 |
+
if mode == "side":
|
| 35 |
+
return SideResize(
|
| 36 |
+
size=resolution,
|
| 37 |
+
downsample_only=downsample_only,
|
| 38 |
+
interpolation=interpolation,
|
| 39 |
+
)
|
| 40 |
+
if mode == "square":
|
| 41 |
+
return Compose(
|
| 42 |
+
[
|
| 43 |
+
Resize(
|
| 44 |
+
size=resolution,
|
| 45 |
+
interpolation=interpolation,
|
| 46 |
+
),
|
| 47 |
+
CenterCrop(resolution),
|
| 48 |
+
]
|
| 49 |
+
)
|
| 50 |
+
raise ValueError(f"Unknown resize mode: {mode}")
|
data/image/transforms/side_resize.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Union
|
| 16 |
+
import torch
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from torchvision.transforms import InterpolationMode
|
| 19 |
+
from torchvision.transforms import functional as TVF
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SideResize:
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
size: int,
|
| 26 |
+
downsample_only: bool = False,
|
| 27 |
+
interpolation: InterpolationMode = InterpolationMode.BICUBIC,
|
| 28 |
+
):
|
| 29 |
+
self.size = size
|
| 30 |
+
self.downsample_only = downsample_only
|
| 31 |
+
self.interpolation = interpolation
|
| 32 |
+
|
| 33 |
+
def __call__(self, image: Union[torch.Tensor, Image.Image]):
|
| 34 |
+
"""
|
| 35 |
+
Args:
|
| 36 |
+
image (PIL Image or Tensor): Image to be scaled.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
PIL Image or Tensor: Rescaled image.
|
| 40 |
+
"""
|
| 41 |
+
if isinstance(image, torch.Tensor):
|
| 42 |
+
height, width = image.shape[-2:]
|
| 43 |
+
elif isinstance(image, Image.Image):
|
| 44 |
+
width, height = image.size
|
| 45 |
+
else:
|
| 46 |
+
raise NotImplementedError
|
| 47 |
+
|
| 48 |
+
if self.downsample_only and min(width, height) < self.size:
|
| 49 |
+
# keep original height and width for small pictures.
|
| 50 |
+
size = min(width, height)
|
| 51 |
+
else:
|
| 52 |
+
size = self.size
|
| 53 |
+
|
| 54 |
+
return TVF.resize(image, size, self.interpolation)
|
data/video/transforms/rearrange.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from einops import rearrange
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Rearrange:
|
| 19 |
+
def __init__(self, pattern: str, **kwargs):
|
| 20 |
+
self.pattern = pattern
|
| 21 |
+
self.kwargs = kwargs
|
| 22 |
+
|
| 23 |
+
def __call__(self, x):
|
| 24 |
+
return rearrange(x, self.pattern, **self.kwargs)
|
models/dit/attention.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
|
| 18 |
+
from flash_attn import flash_attn_varlen_func
|
| 19 |
+
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
class TorchAttention(nn.Module):
|
| 23 |
+
def tflops(self, args, kwargs, output) -> float:
|
| 24 |
+
assert len(args) == 0 or len(args) > 2, "query, key should both provided by args / kwargs"
|
| 25 |
+
q = kwargs.get("query") or args[0]
|
| 26 |
+
k = kwargs.get("key") or args[1]
|
| 27 |
+
b, h, sq, d = q.shape
|
| 28 |
+
b, h, sk, d = k.shape
|
| 29 |
+
return b * h * (4 * d * (sq / 1e6) * (sk / 1e6))
|
| 30 |
+
|
| 31 |
+
def forward(self, *args, **kwargs):
|
| 32 |
+
return F.scaled_dot_product_attention(*args, **kwargs)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FlashAttentionVarlen(nn.Module):
|
| 36 |
+
def tflops(self, args, kwargs, output) -> float:
|
| 37 |
+
cu_seqlens_q = kwargs["cu_seqlens_q"]
|
| 38 |
+
cu_seqlens_k = kwargs["cu_seqlens_k"]
|
| 39 |
+
_, h, d = output.shape
|
| 40 |
+
seqlens_q = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]) / 1e6
|
| 41 |
+
seqlens_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]) / 1e6
|
| 42 |
+
return h * (4 * d * (seqlens_q * seqlens_k).sum())
|
| 43 |
+
|
| 44 |
+
def forward(self, *args, **kwargs):
|
| 45 |
+
kwargs["deterministic"] = torch.are_deterministic_algorithms_enabled()
|
| 46 |
+
return flash_attn_varlen_func(*args, **kwargs)
|
models/dit/blocks/__init__.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from .mmdit_window_block import MMWindowTransformerBlock
|
| 16 |
+
|
| 17 |
+
dit_blocks = {
|
| 18 |
+
"mmdit_window": MMWindowTransformerBlock,
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_block(block_type: str):
|
| 23 |
+
if block_type in dit_blocks:
|
| 24 |
+
return dit_blocks[block_type]
|
| 25 |
+
raise NotImplementedError(f"{block_type} is not supported")
|
models/dit/blocks/mmdit_window_block.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Tuple, Union
|
| 16 |
+
import torch
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
from torch import nn
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
from torch.nn.modules.utils import _triple
|
| 21 |
+
|
| 22 |
+
from common.distributed.ops import (
|
| 23 |
+
gather_heads,
|
| 24 |
+
gather_heads_scatter_seq,
|
| 25 |
+
gather_seq_scatter_heads_qkv,
|
| 26 |
+
scatter_heads,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
from ..attention import TorchAttention
|
| 30 |
+
from ..mlp import get_mlp
|
| 31 |
+
from ..mm import MMArg, MMModule
|
| 32 |
+
from ..modulation import ada_layer_type
|
| 33 |
+
from ..normalization import norm_layer_type
|
| 34 |
+
from ..rope import RotaryEmbedding3d
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class MMWindowAttention(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
vid_dim: int,
|
| 41 |
+
txt_dim: int,
|
| 42 |
+
heads: int,
|
| 43 |
+
head_dim: int,
|
| 44 |
+
qk_bias: bool,
|
| 45 |
+
qk_rope: bool,
|
| 46 |
+
qk_norm: norm_layer_type,
|
| 47 |
+
qk_norm_eps: float,
|
| 48 |
+
window: Union[int, Tuple[int, int, int]],
|
| 49 |
+
window_method: str,
|
| 50 |
+
shared_qkv: bool,
|
| 51 |
+
):
|
| 52 |
+
super().__init__()
|
| 53 |
+
dim = MMArg(vid_dim, txt_dim)
|
| 54 |
+
inner_dim = heads * head_dim
|
| 55 |
+
qkv_dim = inner_dim * 3
|
| 56 |
+
|
| 57 |
+
self.window = _triple(window)
|
| 58 |
+
self.window_method = window_method
|
| 59 |
+
assert all(map(lambda v: isinstance(v, int) and v >= 0, self.window))
|
| 60 |
+
|
| 61 |
+
self.head_dim = head_dim
|
| 62 |
+
self.proj_qkv = MMModule(nn.Linear, dim, qkv_dim, bias=qk_bias, shared_weights=shared_qkv)
|
| 63 |
+
self.proj_out = MMModule(nn.Linear, inner_dim, dim, shared_weights=shared_qkv)
|
| 64 |
+
self.norm_q = MMModule(qk_norm, dim=head_dim, eps=qk_norm_eps, elementwise_affine=True)
|
| 65 |
+
self.norm_k = MMModule(qk_norm, dim=head_dim, eps=qk_norm_eps, elementwise_affine=True)
|
| 66 |
+
self.rope = RotaryEmbedding3d(dim=head_dim // 2) if qk_rope else None
|
| 67 |
+
self.attn = TorchAttention()
|
| 68 |
+
|
| 69 |
+
def forward(
|
| 70 |
+
self,
|
| 71 |
+
vid: torch.FloatTensor, # b T H W c
|
| 72 |
+
txt: torch.FloatTensor, # b L c
|
| 73 |
+
txt_mask: torch.BoolTensor, # b L
|
| 74 |
+
) -> Tuple[
|
| 75 |
+
torch.FloatTensor,
|
| 76 |
+
torch.FloatTensor,
|
| 77 |
+
]:
|
| 78 |
+
# Project q, k, v.
|
| 79 |
+
vid_qkv, txt_qkv = self.proj_qkv(vid, txt)
|
| 80 |
+
vid_qkv = gather_seq_scatter_heads_qkv(vid_qkv, seq_dim=2)
|
| 81 |
+
_, T, H, W, _ = vid_qkv.shape
|
| 82 |
+
_, L, _ = txt.shape
|
| 83 |
+
|
| 84 |
+
if self.window_method == "win":
|
| 85 |
+
nt, nh, nw = self.window
|
| 86 |
+
tt, hh, ww = T // nt, H // nh, W // nw
|
| 87 |
+
elif self.window_method == "win_by_size":
|
| 88 |
+
tt, hh, ww = self.window
|
| 89 |
+
tt, hh, ww = (
|
| 90 |
+
tt if tt > 0 else T,
|
| 91 |
+
hh if hh > 0 else H,
|
| 92 |
+
ww if ww > 0 else W,
|
| 93 |
+
)
|
| 94 |
+
nt, nh, nw = T // tt, H // hh, W // ww
|
| 95 |
+
else:
|
| 96 |
+
raise NotImplementedError
|
| 97 |
+
|
| 98 |
+
vid_qkv = rearrange(vid_qkv, "b T H W (o h d) -> o b h (T H W) d", o=3, d=self.head_dim)
|
| 99 |
+
txt_qkv = rearrange(txt_qkv, "b L (o h d) -> o b h L d", o=3, d=self.head_dim)
|
| 100 |
+
txt_qkv = scatter_heads(txt_qkv, dim=2)
|
| 101 |
+
|
| 102 |
+
vid_q, vid_k, vid_v = vid_qkv.unbind()
|
| 103 |
+
txt_q, txt_k, txt_v = txt_qkv.unbind()
|
| 104 |
+
|
| 105 |
+
vid_q, txt_q = self.norm_q(vid_q, txt_q)
|
| 106 |
+
vid_k, txt_k = self.norm_k(vid_k, txt_k)
|
| 107 |
+
|
| 108 |
+
if self.rope:
|
| 109 |
+
vid_q, vid_k = self.rope(vid_q, vid_k, (T, H, W))
|
| 110 |
+
|
| 111 |
+
def vid_window(v):
|
| 112 |
+
return rearrange(
|
| 113 |
+
v,
|
| 114 |
+
"b h (nt tt nh hh nw ww) d -> b h (nt nh nw) (tt hh ww) d",
|
| 115 |
+
hh=hh,
|
| 116 |
+
ww=ww,
|
| 117 |
+
tt=tt,
|
| 118 |
+
nh=nh,
|
| 119 |
+
nw=nw,
|
| 120 |
+
nt=nt,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
def txt_window(t):
|
| 124 |
+
return rearrange(t, "b h L d -> b h 1 L d").expand(-1, -1, nt * nh * nw, -1, -1)
|
| 125 |
+
|
| 126 |
+
# Process video attention.
|
| 127 |
+
vid_msk = F.pad(txt_mask, (tt * hh * ww, 0), value=True)
|
| 128 |
+
vid_msk = rearrange(vid_msk, "b l -> b 1 1 1 l").expand(-1, 1, 1, tt * hh * ww, -1)
|
| 129 |
+
vid_out = self.attn(
|
| 130 |
+
vid_window(vid_q),
|
| 131 |
+
torch.cat([vid_window(vid_k), txt_window(txt_k)], dim=-2),
|
| 132 |
+
torch.cat([vid_window(vid_v), txt_window(txt_v)], dim=-2),
|
| 133 |
+
vid_msk,
|
| 134 |
+
)
|
| 135 |
+
vid_out = rearrange(
|
| 136 |
+
vid_out,
|
| 137 |
+
"b h (nt nh nw) (tt hh ww) d -> b (nt tt) (nh hh) (nw ww) (h d)",
|
| 138 |
+
hh=hh,
|
| 139 |
+
ww=ww,
|
| 140 |
+
tt=tt,
|
| 141 |
+
nh=nh,
|
| 142 |
+
nw=nw,
|
| 143 |
+
)
|
| 144 |
+
vid_out = gather_heads_scatter_seq(vid_out, head_dim=4, seq_dim=2)
|
| 145 |
+
|
| 146 |
+
# Process text attention.
|
| 147 |
+
txt_msk = F.pad(txt_mask, (T * H * W, 0), value=True)
|
| 148 |
+
txt_msk = rearrange(txt_msk, "b l -> b 1 1 l").expand(-1, 1, L, -1)
|
| 149 |
+
txt_out = self.attn(
|
| 150 |
+
txt_q,
|
| 151 |
+
torch.cat([vid_k, txt_k], dim=-2),
|
| 152 |
+
torch.cat([vid_v, txt_v], dim=-2),
|
| 153 |
+
txt_msk,
|
| 154 |
+
)
|
| 155 |
+
txt_out = rearrange(txt_out, "b h L d -> b L (h d)")
|
| 156 |
+
txt_out = gather_heads(txt_out, dim=2)
|
| 157 |
+
|
| 158 |
+
# Project output.
|
| 159 |
+
vid_out, txt_out = self.proj_out(vid_out, txt_out)
|
| 160 |
+
return vid_out, txt_out
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class MMWindowTransformerBlock(nn.Module):
|
| 164 |
+
def __init__(
|
| 165 |
+
self,
|
| 166 |
+
*,
|
| 167 |
+
vid_dim: int,
|
| 168 |
+
txt_dim: int,
|
| 169 |
+
emb_dim: int,
|
| 170 |
+
heads: int,
|
| 171 |
+
head_dim: int,
|
| 172 |
+
expand_ratio: int,
|
| 173 |
+
norm: norm_layer_type,
|
| 174 |
+
norm_eps: float,
|
| 175 |
+
ada: ada_layer_type,
|
| 176 |
+
qk_bias: bool,
|
| 177 |
+
qk_rope: bool,
|
| 178 |
+
qk_norm: norm_layer_type,
|
| 179 |
+
window: Union[int, Tuple[int, int, int]],
|
| 180 |
+
window_method: str,
|
| 181 |
+
shared_qkv: bool,
|
| 182 |
+
shared_mlp: bool,
|
| 183 |
+
mlp_type: str,
|
| 184 |
+
**kwargs,
|
| 185 |
+
):
|
| 186 |
+
super().__init__()
|
| 187 |
+
dim = MMArg(vid_dim, txt_dim)
|
| 188 |
+
self.attn_norm = MMModule(norm, dim=dim, eps=norm_eps, elementwise_affine=False)
|
| 189 |
+
self.attn = MMWindowAttention(
|
| 190 |
+
vid_dim=vid_dim,
|
| 191 |
+
txt_dim=txt_dim,
|
| 192 |
+
heads=heads,
|
| 193 |
+
head_dim=head_dim,
|
| 194 |
+
qk_bias=qk_bias,
|
| 195 |
+
qk_rope=qk_rope,
|
| 196 |
+
qk_norm=qk_norm,
|
| 197 |
+
qk_norm_eps=norm_eps,
|
| 198 |
+
window=window,
|
| 199 |
+
window_method=window_method,
|
| 200 |
+
shared_qkv=shared_qkv,
|
| 201 |
+
)
|
| 202 |
+
self.mlp_norm = MMModule(norm, dim=dim, eps=norm_eps, elementwise_affine=False)
|
| 203 |
+
self.mlp = MMModule(
|
| 204 |
+
get_mlp(mlp_type),
|
| 205 |
+
dim=dim,
|
| 206 |
+
expand_ratio=expand_ratio,
|
| 207 |
+
shared_weights=shared_mlp,
|
| 208 |
+
)
|
| 209 |
+
self.ada = MMModule(ada, dim=dim, emb_dim=emb_dim, layers=["attn", "mlp"])
|
| 210 |
+
|
| 211 |
+
def forward(
|
| 212 |
+
self,
|
| 213 |
+
vid: torch.FloatTensor,
|
| 214 |
+
txt: torch.FloatTensor,
|
| 215 |
+
txt_mask: torch.BoolTensor,
|
| 216 |
+
emb: torch.FloatTensor,
|
| 217 |
+
) -> Tuple[
|
| 218 |
+
torch.FloatTensor,
|
| 219 |
+
torch.FloatTensor,
|
| 220 |
+
]:
|
| 221 |
+
vid_attn, txt_attn = self.attn_norm(vid, txt)
|
| 222 |
+
vid_attn, txt_attn = self.ada(vid_attn, txt_attn, emb=emb, layer="attn", mode="in")
|
| 223 |
+
vid_attn, txt_attn = self.attn(vid_attn, txt_attn, txt_mask=txt_mask)
|
| 224 |
+
vid_attn, txt_attn = self.ada(vid_attn, txt_attn, emb=emb, layer="attn", mode="out")
|
| 225 |
+
vid_attn, txt_attn = (vid_attn + vid), (txt_attn + txt)
|
| 226 |
+
|
| 227 |
+
vid_mlp, txt_mlp = self.mlp_norm(vid_attn, txt_attn)
|
| 228 |
+
vid_mlp, txt_mlp = self.ada(vid_mlp, txt_mlp, emb=emb, layer="mlp", mode="in")
|
| 229 |
+
vid_mlp, txt_mlp = self.mlp(vid_mlp, txt_mlp)
|
| 230 |
+
vid_mlp, txt_mlp = self.ada(vid_mlp, txt_mlp, emb=emb, layer="mlp", mode="out")
|
| 231 |
+
vid_mlp, txt_mlp = (vid_mlp + vid_attn), (txt_mlp + txt_attn)
|
| 232 |
+
|
| 233 |
+
return vid_mlp, txt_mlp
|
models/dit/embedding.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional, Union
|
| 16 |
+
import torch
|
| 17 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def emb_add(emb1: torch.Tensor, emb2: Optional[torch.Tensor]):
|
| 22 |
+
return emb1 if emb2 is None else emb1 + emb2
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class TimeEmbedding(nn.Module):
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
sinusoidal_dim: int,
|
| 29 |
+
hidden_dim: int,
|
| 30 |
+
output_dim: int,
|
| 31 |
+
):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.sinusoidal_dim = sinusoidal_dim
|
| 34 |
+
self.proj_in = nn.Linear(sinusoidal_dim, hidden_dim)
|
| 35 |
+
self.proj_hid = nn.Linear(hidden_dim, hidden_dim)
|
| 36 |
+
self.proj_out = nn.Linear(hidden_dim, output_dim)
|
| 37 |
+
self.act = nn.SiLU()
|
| 38 |
+
|
| 39 |
+
def forward(
|
| 40 |
+
self,
|
| 41 |
+
timestep: Union[int, float, torch.IntTensor, torch.FloatTensor],
|
| 42 |
+
device: torch.device,
|
| 43 |
+
dtype: torch.dtype,
|
| 44 |
+
) -> torch.FloatTensor:
|
| 45 |
+
if not torch.is_tensor(timestep):
|
| 46 |
+
timestep = torch.tensor([timestep], device=device, dtype=dtype)
|
| 47 |
+
if timestep.ndim == 0:
|
| 48 |
+
timestep = timestep[None]
|
| 49 |
+
|
| 50 |
+
emb = get_timestep_embedding(
|
| 51 |
+
timesteps=timestep,
|
| 52 |
+
embedding_dim=self.sinusoidal_dim,
|
| 53 |
+
flip_sin_to_cos=False,
|
| 54 |
+
downscale_freq_shift=0,
|
| 55 |
+
)
|
| 56 |
+
emb = emb.to(dtype)
|
| 57 |
+
emb = self.proj_in(emb)
|
| 58 |
+
emb = self.act(emb)
|
| 59 |
+
emb = self.proj_hid(emb)
|
| 60 |
+
emb = self.act(emb)
|
| 61 |
+
emb = self.proj_out(emb)
|
| 62 |
+
return emb
|
models/dit/mlp.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def get_mlp(mlp_type: Optional[str] = "normal"):
|
| 22 |
+
if mlp_type == "normal":
|
| 23 |
+
return MLP
|
| 24 |
+
elif mlp_type == "swiglu":
|
| 25 |
+
return SwiGLUMLP
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class MLP(nn.Module):
|
| 29 |
+
def __init__(
|
| 30 |
+
self,
|
| 31 |
+
dim: int,
|
| 32 |
+
expand_ratio: int,
|
| 33 |
+
):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.proj_in = nn.Linear(dim, dim * expand_ratio)
|
| 36 |
+
self.act = nn.GELU("tanh")
|
| 37 |
+
self.proj_out = nn.Linear(dim * expand_ratio, dim)
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 40 |
+
x = self.proj_in(x)
|
| 41 |
+
x = self.act(x)
|
| 42 |
+
x = self.proj_out(x)
|
| 43 |
+
return x
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class SwiGLUMLP(nn.Module):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
dim: int,
|
| 50 |
+
expand_ratio: int,
|
| 51 |
+
multiple_of: int = 256,
|
| 52 |
+
):
|
| 53 |
+
super().__init__()
|
| 54 |
+
hidden_dim = int(2 * dim * expand_ratio / 3)
|
| 55 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 56 |
+
self.proj_in_gate = nn.Linear(dim, hidden_dim, bias=False)
|
| 57 |
+
self.proj_out = nn.Linear(hidden_dim, dim, bias=False)
|
| 58 |
+
self.proj_in = nn.Linear(dim, hidden_dim, bias=False)
|
| 59 |
+
|
| 60 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 61 |
+
x = self.proj_out(F.silu(self.proj_in_gate(x)) * self.proj_in(x))
|
| 62 |
+
return x
|
models/dit/mm.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Callable, Dict, List, Tuple
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class MMArg:
|
| 23 |
+
vid: Any
|
| 24 |
+
txt: Any
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(key: str, args: List[Any]) -> List[Any]:
|
| 28 |
+
return [getattr(v, key) if isinstance(v, MMArg) else v for v in args]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_kwargs(key: str, kwargs: Dict[str, Any]) -> Dict[str, Any]:
|
| 32 |
+
return {k: getattr(v, key) if isinstance(v, MMArg) else v for k, v in kwargs.items()}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class MMModule(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
module: Callable[..., nn.Module],
|
| 39 |
+
*args,
|
| 40 |
+
shared_weights: bool = False,
|
| 41 |
+
**kwargs,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.shared_weights = shared_weights
|
| 45 |
+
if self.shared_weights:
|
| 46 |
+
assert get_args("vid", args) == get_args("txt", args)
|
| 47 |
+
assert get_kwargs("vid", kwargs) == get_kwargs("txt", kwargs)
|
| 48 |
+
self.all = module(*get_args("vid", args), **get_kwargs("vid", kwargs))
|
| 49 |
+
else:
|
| 50 |
+
self.vid = module(*get_args("vid", args), **get_kwargs("vid", kwargs))
|
| 51 |
+
self.txt = module(*get_args("txt", args), **get_kwargs("txt", kwargs))
|
| 52 |
+
|
| 53 |
+
def forward(
|
| 54 |
+
self,
|
| 55 |
+
vid: torch.FloatTensor,
|
| 56 |
+
txt: torch.FloatTensor,
|
| 57 |
+
*args,
|
| 58 |
+
**kwargs,
|
| 59 |
+
) -> Tuple[
|
| 60 |
+
torch.FloatTensor,
|
| 61 |
+
torch.FloatTensor,
|
| 62 |
+
]:
|
| 63 |
+
vid_module = self.vid if not self.shared_weights else self.all
|
| 64 |
+
txt_module = self.txt if not self.shared_weights else self.all
|
| 65 |
+
vid = vid_module(vid, *get_args("vid", args), **get_kwargs("vid", kwargs))
|
| 66 |
+
txt = txt_module(txt, *get_args("txt", args), **get_kwargs("txt", kwargs))
|
| 67 |
+
return vid, txt
|
models/dit/modulation.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Callable, List, Optional
|
| 16 |
+
import torch
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from common.cache import Cache
|
| 21 |
+
from common.distributed.ops import slice_inputs
|
| 22 |
+
|
| 23 |
+
# (dim: int, emb_dim: int)
|
| 24 |
+
ada_layer_type = Callable[[int, int], nn.Module]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_ada_layer(ada_layer: str) -> ada_layer_type:
|
| 28 |
+
if ada_layer == "single":
|
| 29 |
+
return AdaSingle
|
| 30 |
+
raise NotImplementedError(f"{ada_layer} is not supported")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def expand_dims(x: torch.Tensor, dim: int, ndim: int):
|
| 34 |
+
"""
|
| 35 |
+
Expand tensor "x" to "ndim" by adding empty dims at "dim".
|
| 36 |
+
Example: x is (b d), target ndim is 5, add dim at 1, return (b 1 1 1 d).
|
| 37 |
+
"""
|
| 38 |
+
shape = x.shape
|
| 39 |
+
shape = shape[:dim] + (1,) * (ndim - len(shape)) + shape[dim:]
|
| 40 |
+
return x.reshape(shape)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class AdaSingle(nn.Module):
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
dim: int,
|
| 47 |
+
emb_dim: int,
|
| 48 |
+
layers: List[str],
|
| 49 |
+
):
|
| 50 |
+
assert emb_dim == 6 * dim, "AdaSingle requires emb_dim == 6 * dim"
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.dim = dim
|
| 53 |
+
self.emb_dim = emb_dim
|
| 54 |
+
self.layers = layers
|
| 55 |
+
for l in layers:
|
| 56 |
+
self.register_parameter(f"{l}_shift", nn.Parameter(torch.randn(dim) / dim**0.5))
|
| 57 |
+
self.register_parameter(f"{l}_scale", nn.Parameter(torch.randn(dim) / dim**0.5 + 1))
|
| 58 |
+
self.register_parameter(f"{l}_gate", nn.Parameter(torch.randn(dim) / dim**0.5))
|
| 59 |
+
|
| 60 |
+
def forward(
|
| 61 |
+
self,
|
| 62 |
+
hid: torch.FloatTensor, # b ... c
|
| 63 |
+
emb: torch.FloatTensor, # b d
|
| 64 |
+
layer: str,
|
| 65 |
+
mode: str,
|
| 66 |
+
cache: Cache = Cache(disable=True),
|
| 67 |
+
branch_tag: str = "",
|
| 68 |
+
hid_len: Optional[torch.LongTensor] = None, # b
|
| 69 |
+
) -> torch.FloatTensor:
|
| 70 |
+
idx = self.layers.index(layer)
|
| 71 |
+
emb = rearrange(emb, "b (d l g) -> b d l g", l=len(self.layers), g=3)[..., idx, :]
|
| 72 |
+
emb = expand_dims(emb, 1, hid.ndim + 1)
|
| 73 |
+
|
| 74 |
+
if hid_len is not None:
|
| 75 |
+
emb = cache(
|
| 76 |
+
f"emb_repeat_{idx}_{branch_tag}",
|
| 77 |
+
lambda: slice_inputs(
|
| 78 |
+
torch.cat([e.repeat(l, *([1] * e.ndim)) for e, l in zip(emb, hid_len)]),
|
| 79 |
+
dim=0,
|
| 80 |
+
),
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
shiftA, scaleA, gateA = emb.unbind(-1)
|
| 84 |
+
shiftB, scaleB, gateB = (
|
| 85 |
+
getattr(self, f"{layer}_shift"),
|
| 86 |
+
getattr(self, f"{layer}_scale"),
|
| 87 |
+
getattr(self, f"{layer}_gate"),
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
if mode == "in":
|
| 91 |
+
return hid.mul_(scaleA + scaleB).add_(shiftA + shiftB)
|
| 92 |
+
if mode == "out":
|
| 93 |
+
return hid.mul_(gateA + gateB)
|
| 94 |
+
raise NotImplementedError
|
| 95 |
+
|
| 96 |
+
def extra_repr(self) -> str:
|
| 97 |
+
return f"dim={self.dim}, emb_dim={self.emb_dim}, layers={self.layers}"
|
models/dit/na.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from itertools import chain
|
| 16 |
+
from typing import Callable, Dict, List, Tuple
|
| 17 |
+
import einops
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def flatten(
|
| 22 |
+
hid: List[torch.FloatTensor], # List of (*** c)
|
| 23 |
+
) -> Tuple[
|
| 24 |
+
torch.FloatTensor, # (L c)
|
| 25 |
+
torch.LongTensor, # (b n)
|
| 26 |
+
]:
|
| 27 |
+
assert len(hid) > 0
|
| 28 |
+
shape = torch.stack([torch.tensor(x.shape[:-1], device=hid[0].device) for x in hid])
|
| 29 |
+
hid = torch.cat([x.flatten(0, -2) for x in hid])
|
| 30 |
+
return hid, shape
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def unflatten(
|
| 34 |
+
hid: torch.FloatTensor, # (L c) or (L ... c)
|
| 35 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 36 |
+
) -> List[torch.Tensor]: # List of (*** c) or (*** ... c)
|
| 37 |
+
hid_len = hid_shape.prod(-1)
|
| 38 |
+
hid = hid.split(hid_len.tolist())
|
| 39 |
+
hid = [x.unflatten(0, s.tolist()) for x, s in zip(hid, hid_shape)]
|
| 40 |
+
return hid
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def concat(
|
| 44 |
+
vid: torch.FloatTensor, # (VL ... c)
|
| 45 |
+
txt: torch.FloatTensor, # (TL ... c)
|
| 46 |
+
vid_len: torch.LongTensor, # (b)
|
| 47 |
+
txt_len: torch.LongTensor, # (b)
|
| 48 |
+
) -> torch.FloatTensor: # (L ... c)
|
| 49 |
+
vid = torch.split(vid, vid_len.tolist())
|
| 50 |
+
txt = torch.split(txt, txt_len.tolist())
|
| 51 |
+
return torch.cat(list(chain(*zip(vid, txt))))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def concat_idx(
|
| 55 |
+
vid_len: torch.LongTensor, # (b)
|
| 56 |
+
txt_len: torch.LongTensor, # (b)
|
| 57 |
+
) -> Tuple[
|
| 58 |
+
Callable,
|
| 59 |
+
Callable,
|
| 60 |
+
]:
|
| 61 |
+
device = vid_len.device
|
| 62 |
+
vid_idx = torch.arange(vid_len.sum(), device=device)
|
| 63 |
+
txt_idx = torch.arange(len(vid_idx), len(vid_idx) + txt_len.sum(), device=device)
|
| 64 |
+
tgt_idx = concat(vid_idx, txt_idx, vid_len, txt_len)
|
| 65 |
+
src_idx = torch.argsort(tgt_idx)
|
| 66 |
+
return (
|
| 67 |
+
lambda vid, txt: torch.index_select(torch.cat([vid, txt]), 0, tgt_idx),
|
| 68 |
+
lambda all: torch.index_select(all, 0, src_idx).split([len(vid_idx), len(txt_idx)]),
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def unconcat(
|
| 73 |
+
all: torch.FloatTensor, # (L ... c)
|
| 74 |
+
vid_len: torch.LongTensor, # (b)
|
| 75 |
+
txt_len: torch.LongTensor, # (b)
|
| 76 |
+
) -> Tuple[
|
| 77 |
+
torch.FloatTensor, # (VL ... c)
|
| 78 |
+
torch.FloatTensor, # (TL ... c)
|
| 79 |
+
]:
|
| 80 |
+
interleave_len = list(chain(*zip(vid_len.tolist(), txt_len.tolist())))
|
| 81 |
+
all = all.split(interleave_len)
|
| 82 |
+
vid = torch.cat(all[0::2])
|
| 83 |
+
txt = torch.cat(all[1::2])
|
| 84 |
+
return vid, txt
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def repeat_concat(
|
| 88 |
+
vid: torch.FloatTensor, # (VL ... c)
|
| 89 |
+
txt: torch.FloatTensor, # (TL ... c)
|
| 90 |
+
vid_len: torch.LongTensor, # (n*b)
|
| 91 |
+
txt_len: torch.LongTensor, # (b)
|
| 92 |
+
txt_repeat: List, # (n)
|
| 93 |
+
) -> torch.FloatTensor: # (L ... c)
|
| 94 |
+
vid = torch.split(vid, vid_len.tolist())
|
| 95 |
+
txt = torch.split(txt, txt_len.tolist())
|
| 96 |
+
txt = [[x] * n for x, n in zip(txt, txt_repeat)]
|
| 97 |
+
txt = list(chain(*txt))
|
| 98 |
+
return torch.cat(list(chain(*zip(vid, txt))))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def repeat_concat_idx(
|
| 102 |
+
vid_len: torch.LongTensor, # (n*b)
|
| 103 |
+
txt_len: torch.LongTensor, # (b)
|
| 104 |
+
txt_repeat: torch.LongTensor, # (n)
|
| 105 |
+
) -> Tuple[
|
| 106 |
+
Callable,
|
| 107 |
+
Callable,
|
| 108 |
+
]:
|
| 109 |
+
device = vid_len.device
|
| 110 |
+
vid_idx = torch.arange(vid_len.sum(), device=device)
|
| 111 |
+
txt_idx = torch.arange(len(vid_idx), len(vid_idx) + txt_len.sum(), device=device)
|
| 112 |
+
txt_repeat_list = txt_repeat.tolist()
|
| 113 |
+
tgt_idx = repeat_concat(vid_idx, txt_idx, vid_len, txt_len, txt_repeat)
|
| 114 |
+
src_idx = torch.argsort(tgt_idx)
|
| 115 |
+
txt_idx_len = len(tgt_idx) - len(vid_idx)
|
| 116 |
+
repeat_txt_len = (txt_len * txt_repeat).tolist()
|
| 117 |
+
|
| 118 |
+
def unconcat_coalesce(all):
|
| 119 |
+
"""
|
| 120 |
+
Un-concat vid & txt, and coalesce the repeated txt.
|
| 121 |
+
e.g. vid [0 1 2 3 4 5 6 7 8] -> 3 splits -> [0 1 2] [3 4 5] [6 7 8]
|
| 122 |
+
txt [9 10]
|
| 123 |
+
repeat_concat ==> [0 1 2 9 10 3 4 5 9 10 6 7 8 9 10]
|
| 124 |
+
1. argsort re-index ==> [0 1 2 3 4 5 6 7 8 9 9 9 10 10 10]
|
| 125 |
+
split ==> vid_out [0 1 2 3 4 5 6 7 8] txt_out [9 9 9 10 10 10]
|
| 126 |
+
2. reshape & mean for each sample to coalesce the repeated txt.
|
| 127 |
+
"""
|
| 128 |
+
vid_out, txt_out = all[src_idx].split([len(vid_idx), txt_idx_len])
|
| 129 |
+
txt_out_coalesced = []
|
| 130 |
+
for txt, repeat_time in zip(txt_out.split(repeat_txt_len), txt_repeat_list):
|
| 131 |
+
txt = txt.reshape(-1, repeat_time, *txt.shape[1:]).mean(1)
|
| 132 |
+
txt_out_coalesced.append(txt)
|
| 133 |
+
return vid_out, torch.cat(txt_out_coalesced)
|
| 134 |
+
|
| 135 |
+
# Note: Backward of torch.index_select is non-deterministic when existing repeated index,
|
| 136 |
+
# the difference may cumulative like torch.repeat_interleave, so we use vanilla index here.
|
| 137 |
+
return (
|
| 138 |
+
lambda vid, txt: torch.cat([vid, txt])[tgt_idx],
|
| 139 |
+
lambda all: unconcat_coalesce(all),
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def rearrange(
|
| 144 |
+
hid: torch.FloatTensor, # (L c)
|
| 145 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 146 |
+
pattern: str,
|
| 147 |
+
**kwargs: Dict[str, int],
|
| 148 |
+
) -> Tuple[
|
| 149 |
+
torch.FloatTensor,
|
| 150 |
+
torch.LongTensor,
|
| 151 |
+
]:
|
| 152 |
+
return flatten([einops.rearrange(h, pattern, **kwargs) for h in unflatten(hid, hid_shape)])
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def rearrange_idx(
|
| 156 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 157 |
+
pattern: str,
|
| 158 |
+
**kwargs: Dict[str, int],
|
| 159 |
+
) -> Tuple[Callable, Callable, torch.LongTensor]:
|
| 160 |
+
hid_idx = torch.arange(hid_shape.prod(-1).sum(), device=hid_shape.device).unsqueeze(-1)
|
| 161 |
+
tgt_idx, tgt_shape = rearrange(hid_idx, hid_shape, pattern, **kwargs)
|
| 162 |
+
tgt_idx = tgt_idx.squeeze(-1)
|
| 163 |
+
src_idx = torch.argsort(tgt_idx)
|
| 164 |
+
return (
|
| 165 |
+
lambda hid: torch.index_select(hid, 0, tgt_idx),
|
| 166 |
+
lambda hid: torch.index_select(hid, 0, src_idx),
|
| 167 |
+
tgt_shape,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def repeat(
|
| 172 |
+
hid: torch.FloatTensor, # (L c)
|
| 173 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 174 |
+
pattern: str,
|
| 175 |
+
**kwargs: Dict[str, torch.LongTensor], # (b)
|
| 176 |
+
) -> Tuple[
|
| 177 |
+
torch.FloatTensor,
|
| 178 |
+
torch.LongTensor,
|
| 179 |
+
]:
|
| 180 |
+
hid = unflatten(hid, hid_shape)
|
| 181 |
+
kwargs = [{k: v[i].item() for k, v in kwargs.items()} for i in range(len(hid))]
|
| 182 |
+
return flatten([einops.repeat(h, pattern, **a) for h, a in zip(hid, kwargs)])
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def pack(
|
| 186 |
+
samples: List[torch.Tensor], # List of (h w c).
|
| 187 |
+
) -> Tuple[
|
| 188 |
+
List[torch.Tensor], # groups [(b1 h1 w1 c1), (b2 h2 w2 c2)]
|
| 189 |
+
List[List[int]], # reversal indices.
|
| 190 |
+
]:
|
| 191 |
+
batches = {}
|
| 192 |
+
indices = {}
|
| 193 |
+
for i, sample in enumerate(samples):
|
| 194 |
+
shape = sample.shape
|
| 195 |
+
batches[shape] = batches.get(shape, [])
|
| 196 |
+
indices[shape] = indices.get(shape, [])
|
| 197 |
+
batches[shape].append(sample)
|
| 198 |
+
indices[shape].append(i)
|
| 199 |
+
|
| 200 |
+
batches = list(map(torch.stack, batches.values()))
|
| 201 |
+
indices = list(indices.values())
|
| 202 |
+
return batches, indices
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def unpack(
|
| 206 |
+
batches: List[torch.Tensor],
|
| 207 |
+
indices: List[List[int]],
|
| 208 |
+
) -> List[torch.Tensor]:
|
| 209 |
+
samples = [None] * (max(chain(*indices)) + 1)
|
| 210 |
+
for batch, index in zip(batches, indices):
|
| 211 |
+
for sample, i in zip(batch.unbind(), index):
|
| 212 |
+
samples[i] = sample
|
| 213 |
+
return samples
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def window(
|
| 217 |
+
hid: torch.FloatTensor, # (L c)
|
| 218 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 219 |
+
window_fn: Callable[[torch.Tensor], List[torch.Tensor]],
|
| 220 |
+
):
|
| 221 |
+
hid = unflatten(hid, hid_shape)
|
| 222 |
+
hid = list(map(window_fn, hid))
|
| 223 |
+
hid_windows = torch.tensor(list(map(len, hid)), device=hid_shape.device)
|
| 224 |
+
hid, hid_shape = flatten(list(chain(*hid)))
|
| 225 |
+
return hid, hid_shape, hid_windows
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def window_idx(
|
| 229 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 230 |
+
window_fn: Callable[[torch.Tensor], List[torch.Tensor]],
|
| 231 |
+
):
|
| 232 |
+
hid_idx = torch.arange(hid_shape.prod(-1).sum(), device=hid_shape.device).unsqueeze(-1)
|
| 233 |
+
tgt_idx, tgt_shape, tgt_windows = window(hid_idx, hid_shape, window_fn)
|
| 234 |
+
tgt_idx = tgt_idx.squeeze(-1)
|
| 235 |
+
src_idx = torch.argsort(tgt_idx)
|
| 236 |
+
return (
|
| 237 |
+
lambda hid: torch.index_select(hid, 0, tgt_idx),
|
| 238 |
+
lambda hid: torch.index_select(hid, 0, src_idx),
|
| 239 |
+
tgt_shape,
|
| 240 |
+
tgt_windows,
|
| 241 |
+
)
|
models/dit/nablocks/__init__.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from .mmsr_block import NaMMSRTransformerBlock
|
| 16 |
+
|
| 17 |
+
nadit_blocks = {
|
| 18 |
+
"mmdit_sr": NaMMSRTransformerBlock,
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_nablock(block_type: str):
|
| 23 |
+
if block_type in nadit_blocks:
|
| 24 |
+
return nadit_blocks[block_type]
|
| 25 |
+
raise NotImplementedError(f"{block_type} is not supported")
|
models/dit/nablocks/mmsr_block.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Tuple, Union
|
| 16 |
+
import torch
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
from torch.nn import functional as F
|
| 19 |
+
|
| 20 |
+
# from ..cache import Cache
|
| 21 |
+
from common.cache import Cache
|
| 22 |
+
from common.distributed.ops import gather_heads_scatter_seq, gather_seq_scatter_heads_qkv
|
| 23 |
+
|
| 24 |
+
from .. import na
|
| 25 |
+
from ..attention import FlashAttentionVarlen
|
| 26 |
+
from ..blocks.mmdit_window_block import MMWindowAttention, MMWindowTransformerBlock
|
| 27 |
+
from ..mm import MMArg
|
| 28 |
+
from ..modulation import ada_layer_type
|
| 29 |
+
from ..normalization import norm_layer_type
|
| 30 |
+
from ..rope import NaRotaryEmbedding3d
|
| 31 |
+
from ..window import get_window_op
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class NaSwinAttention(MMWindowAttention):
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
vid_dim: int,
|
| 38 |
+
txt_dim: int,
|
| 39 |
+
heads: int,
|
| 40 |
+
head_dim: int,
|
| 41 |
+
qk_bias: bool,
|
| 42 |
+
qk_rope: bool,
|
| 43 |
+
qk_norm: norm_layer_type,
|
| 44 |
+
qk_norm_eps: float,
|
| 45 |
+
window: Union[int, Tuple[int, int, int]],
|
| 46 |
+
window_method: str,
|
| 47 |
+
shared_qkv: bool,
|
| 48 |
+
**kwargs,
|
| 49 |
+
):
|
| 50 |
+
super().__init__(
|
| 51 |
+
vid_dim=vid_dim,
|
| 52 |
+
txt_dim=txt_dim,
|
| 53 |
+
heads=heads,
|
| 54 |
+
head_dim=head_dim,
|
| 55 |
+
qk_bias=qk_bias,
|
| 56 |
+
qk_rope=qk_rope,
|
| 57 |
+
qk_norm=qk_norm,
|
| 58 |
+
qk_norm_eps=qk_norm_eps,
|
| 59 |
+
window=window,
|
| 60 |
+
window_method=window_method,
|
| 61 |
+
shared_qkv=shared_qkv,
|
| 62 |
+
)
|
| 63 |
+
self.rope = NaRotaryEmbedding3d(dim=head_dim // 2) if qk_rope else None
|
| 64 |
+
self.attn = FlashAttentionVarlen()
|
| 65 |
+
self.window_op = get_window_op(window_method)
|
| 66 |
+
|
| 67 |
+
def forward(
|
| 68 |
+
self,
|
| 69 |
+
vid: torch.FloatTensor, # l c
|
| 70 |
+
txt: torch.FloatTensor, # l c
|
| 71 |
+
vid_shape: torch.LongTensor, # b 3
|
| 72 |
+
txt_shape: torch.LongTensor, # b 1
|
| 73 |
+
cache: Cache,
|
| 74 |
+
) -> Tuple[
|
| 75 |
+
torch.FloatTensor,
|
| 76 |
+
torch.FloatTensor,
|
| 77 |
+
]:
|
| 78 |
+
|
| 79 |
+
vid_qkv, txt_qkv = self.proj_qkv(vid, txt)
|
| 80 |
+
vid_qkv = gather_seq_scatter_heads_qkv(
|
| 81 |
+
vid_qkv,
|
| 82 |
+
seq_dim=0,
|
| 83 |
+
qkv_shape=vid_shape,
|
| 84 |
+
cache=cache.namespace("vid"),
|
| 85 |
+
)
|
| 86 |
+
txt_qkv = gather_seq_scatter_heads_qkv(
|
| 87 |
+
txt_qkv,
|
| 88 |
+
seq_dim=0,
|
| 89 |
+
qkv_shape=txt_shape,
|
| 90 |
+
cache=cache.namespace("txt"),
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# re-org the input seq for window attn
|
| 94 |
+
cache_win = cache.namespace(f"{self.window_method}_{self.window}_sd3")
|
| 95 |
+
|
| 96 |
+
def make_window(x: torch.Tensor):
|
| 97 |
+
t, h, w, _ = x.shape
|
| 98 |
+
window_slices = self.window_op((t, h, w), self.window)
|
| 99 |
+
return [x[st, sh, sw] for (st, sh, sw) in window_slices]
|
| 100 |
+
|
| 101 |
+
window_partition, window_reverse, window_shape, window_count = cache_win(
|
| 102 |
+
"win_transform",
|
| 103 |
+
lambda: na.window_idx(vid_shape, make_window),
|
| 104 |
+
)
|
| 105 |
+
vid_qkv_win = window_partition(vid_qkv)
|
| 106 |
+
|
| 107 |
+
vid_qkv_win = rearrange(vid_qkv_win, "l (o h d) -> l o h d", o=3, d=self.head_dim)
|
| 108 |
+
txt_qkv = rearrange(txt_qkv, "l (o h d) -> l o h d", o=3, d=self.head_dim)
|
| 109 |
+
|
| 110 |
+
vid_q, vid_k, vid_v = vid_qkv_win.unbind(1)
|
| 111 |
+
txt_q, txt_k, txt_v = txt_qkv.unbind(1)
|
| 112 |
+
|
| 113 |
+
vid_q, txt_q = self.norm_q(vid_q, txt_q)
|
| 114 |
+
vid_k, txt_k = self.norm_k(vid_k, txt_k)
|
| 115 |
+
|
| 116 |
+
txt_len = cache("txt_len", lambda: txt_shape.prod(-1))
|
| 117 |
+
|
| 118 |
+
vid_len_win = cache_win("vid_len", lambda: window_shape.prod(-1))
|
| 119 |
+
txt_len_win = cache_win("txt_len", lambda: txt_len.repeat_interleave(window_count))
|
| 120 |
+
all_len_win = cache_win("all_len", lambda: vid_len_win + txt_len_win)
|
| 121 |
+
concat_win, unconcat_win = cache_win(
|
| 122 |
+
"mm_pnp", lambda: na.repeat_concat_idx(vid_len_win, txt_len, window_count)
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# window rope
|
| 126 |
+
if self.rope:
|
| 127 |
+
vid_q, vid_k = self.rope(vid_q, vid_k, window_shape, cache_win)
|
| 128 |
+
|
| 129 |
+
out = self.attn(
|
| 130 |
+
q=concat_win(vid_q, txt_q).bfloat16(),
|
| 131 |
+
k=concat_win(vid_k, txt_k).bfloat16(),
|
| 132 |
+
v=concat_win(vid_v, txt_v).bfloat16(),
|
| 133 |
+
cu_seqlens_q=cache_win(
|
| 134 |
+
"vid_seqlens_q", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int()
|
| 135 |
+
),
|
| 136 |
+
cu_seqlens_k=cache_win(
|
| 137 |
+
"vid_seqlens_k", lambda: F.pad(all_len_win.cumsum(0), (1, 0)).int()
|
| 138 |
+
),
|
| 139 |
+
max_seqlen_q=cache_win("vid_max_seqlen_q", lambda: all_len_win.max().item()),
|
| 140 |
+
max_seqlen_k=cache_win("vid_max_seqlen_k", lambda: all_len_win.max().item()),
|
| 141 |
+
).type_as(vid_q)
|
| 142 |
+
|
| 143 |
+
# text pooling
|
| 144 |
+
vid_out, txt_out = unconcat_win(out)
|
| 145 |
+
|
| 146 |
+
vid_out = rearrange(vid_out, "l h d -> l (h d)")
|
| 147 |
+
txt_out = rearrange(txt_out, "l h d -> l (h d)")
|
| 148 |
+
vid_out = window_reverse(vid_out)
|
| 149 |
+
|
| 150 |
+
vid_out = gather_heads_scatter_seq(vid_out, head_dim=1, seq_dim=0)
|
| 151 |
+
txt_out = gather_heads_scatter_seq(txt_out, head_dim=1, seq_dim=0)
|
| 152 |
+
|
| 153 |
+
vid_out, txt_out = self.proj_out(vid_out, txt_out)
|
| 154 |
+
|
| 155 |
+
return vid_out, txt_out
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class NaMMSRTransformerBlock(MMWindowTransformerBlock):
|
| 159 |
+
def __init__(
|
| 160 |
+
self,
|
| 161 |
+
*,
|
| 162 |
+
vid_dim: int,
|
| 163 |
+
txt_dim: int,
|
| 164 |
+
emb_dim: int,
|
| 165 |
+
heads: int,
|
| 166 |
+
head_dim: int,
|
| 167 |
+
expand_ratio: int,
|
| 168 |
+
norm: norm_layer_type,
|
| 169 |
+
norm_eps: float,
|
| 170 |
+
ada: ada_layer_type,
|
| 171 |
+
qk_bias: bool,
|
| 172 |
+
qk_rope: bool,
|
| 173 |
+
qk_norm: norm_layer_type,
|
| 174 |
+
shared_qkv: bool,
|
| 175 |
+
shared_mlp: bool,
|
| 176 |
+
mlp_type: str,
|
| 177 |
+
**kwargs,
|
| 178 |
+
):
|
| 179 |
+
super().__init__(
|
| 180 |
+
vid_dim=vid_dim,
|
| 181 |
+
txt_dim=txt_dim,
|
| 182 |
+
emb_dim=emb_dim,
|
| 183 |
+
heads=heads,
|
| 184 |
+
head_dim=head_dim,
|
| 185 |
+
expand_ratio=expand_ratio,
|
| 186 |
+
norm=norm,
|
| 187 |
+
norm_eps=norm_eps,
|
| 188 |
+
ada=ada,
|
| 189 |
+
qk_bias=qk_bias,
|
| 190 |
+
qk_rope=qk_rope,
|
| 191 |
+
qk_norm=qk_norm,
|
| 192 |
+
shared_qkv=shared_qkv,
|
| 193 |
+
shared_mlp=shared_mlp,
|
| 194 |
+
mlp_type=mlp_type,
|
| 195 |
+
**kwargs,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
self.attn = NaSwinAttention(
|
| 199 |
+
vid_dim=vid_dim,
|
| 200 |
+
txt_dim=txt_dim,
|
| 201 |
+
heads=heads,
|
| 202 |
+
head_dim=head_dim,
|
| 203 |
+
qk_bias=qk_bias,
|
| 204 |
+
qk_rope=qk_rope,
|
| 205 |
+
qk_norm=qk_norm,
|
| 206 |
+
qk_norm_eps=norm_eps,
|
| 207 |
+
shared_qkv=shared_qkv,
|
| 208 |
+
**kwargs,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
def forward(
|
| 212 |
+
self,
|
| 213 |
+
vid: torch.FloatTensor, # l c
|
| 214 |
+
txt: torch.FloatTensor, # l c
|
| 215 |
+
vid_shape: torch.LongTensor, # b 3
|
| 216 |
+
txt_shape: torch.LongTensor, # b 1
|
| 217 |
+
emb: torch.FloatTensor,
|
| 218 |
+
cache: Cache,
|
| 219 |
+
) -> Tuple[
|
| 220 |
+
torch.FloatTensor,
|
| 221 |
+
torch.FloatTensor,
|
| 222 |
+
torch.LongTensor,
|
| 223 |
+
torch.LongTensor,
|
| 224 |
+
]:
|
| 225 |
+
hid_len = MMArg(
|
| 226 |
+
cache("vid_len", lambda: vid_shape.prod(-1)),
|
| 227 |
+
cache("txt_len", lambda: txt_shape.prod(-1)),
|
| 228 |
+
)
|
| 229 |
+
ada_kwargs = {
|
| 230 |
+
"emb": emb,
|
| 231 |
+
"hid_len": hid_len,
|
| 232 |
+
"cache": cache,
|
| 233 |
+
"branch_tag": MMArg("vid", "txt"),
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
vid_attn, txt_attn = self.attn_norm(vid, txt)
|
| 237 |
+
vid_attn, txt_attn = self.ada(vid_attn, txt_attn, layer="attn", mode="in", **ada_kwargs)
|
| 238 |
+
vid_attn, txt_attn = self.attn(vid_attn, txt_attn, vid_shape, txt_shape, cache)
|
| 239 |
+
vid_attn, txt_attn = self.ada(vid_attn, txt_attn, layer="attn", mode="out", **ada_kwargs)
|
| 240 |
+
vid_attn, txt_attn = (vid_attn + vid), (txt_attn + txt)
|
| 241 |
+
|
| 242 |
+
vid_mlp, txt_mlp = self.mlp_norm(vid_attn, txt_attn)
|
| 243 |
+
vid_mlp, txt_mlp = self.ada(vid_mlp, txt_mlp, layer="mlp", mode="in", **ada_kwargs)
|
| 244 |
+
vid_mlp, txt_mlp = self.mlp(vid_mlp, txt_mlp)
|
| 245 |
+
vid_mlp, txt_mlp = self.ada(vid_mlp, txt_mlp, layer="mlp", mode="out", **ada_kwargs)
|
| 246 |
+
vid_mlp, txt_mlp = (vid_mlp + vid_attn), (txt_mlp + txt_attn)
|
| 247 |
+
|
| 248 |
+
return vid_mlp, txt_mlp, vid_shape, txt_shape
|
models/dit/nadit.py
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Optional, Tuple, Union, Callable
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from common.cache import Cache
|
| 21 |
+
from common.distributed.ops import slice_inputs
|
| 22 |
+
|
| 23 |
+
from . import na
|
| 24 |
+
from .embedding import TimeEmbedding
|
| 25 |
+
from .modulation import get_ada_layer
|
| 26 |
+
from .nablocks import get_nablock
|
| 27 |
+
from .normalization import get_norm_layer
|
| 28 |
+
from .patch import NaPatchIn, NaPatchOut
|
| 29 |
+
|
| 30 |
+
# Fake func, no checkpointing is required for inference
|
| 31 |
+
def gradient_checkpointing(module: Union[Callable, nn.Module], *args, enabled: bool, **kwargs):
|
| 32 |
+
return module(*args, **kwargs)
|
| 33 |
+
|
| 34 |
+
@dataclass
|
| 35 |
+
class NaDiTOutput:
|
| 36 |
+
vid_sample: torch.Tensor
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class NaDiT(nn.Module):
|
| 40 |
+
"""
|
| 41 |
+
Native Resolution Diffusion Transformer (NaDiT)
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
gradient_checkpointing = False
|
| 45 |
+
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
vid_in_channels: int,
|
| 49 |
+
vid_out_channels: int,
|
| 50 |
+
vid_dim: int,
|
| 51 |
+
txt_in_dim: Optional[int],
|
| 52 |
+
txt_dim: Optional[int],
|
| 53 |
+
emb_dim: int,
|
| 54 |
+
heads: int,
|
| 55 |
+
head_dim: int,
|
| 56 |
+
expand_ratio: int,
|
| 57 |
+
norm: Optional[str],
|
| 58 |
+
norm_eps: float,
|
| 59 |
+
ada: str,
|
| 60 |
+
qk_bias: bool,
|
| 61 |
+
qk_rope: bool,
|
| 62 |
+
qk_norm: Optional[str],
|
| 63 |
+
patch_size: Union[int, Tuple[int, int, int]],
|
| 64 |
+
num_layers: int,
|
| 65 |
+
block_type: Union[str, Tuple[str]],
|
| 66 |
+
shared_qkv: bool = False,
|
| 67 |
+
shared_mlp: bool = False,
|
| 68 |
+
mlp_type: str = "normal",
|
| 69 |
+
window: Optional[Tuple] = None,
|
| 70 |
+
window_method: Optional[Tuple[str]] = None,
|
| 71 |
+
temporal_window_size: int = None,
|
| 72 |
+
temporal_shifted: bool = False,
|
| 73 |
+
**kwargs,
|
| 74 |
+
):
|
| 75 |
+
ada = get_ada_layer(ada)
|
| 76 |
+
norm = get_norm_layer(norm)
|
| 77 |
+
qk_norm = get_norm_layer(qk_norm)
|
| 78 |
+
if isinstance(block_type, str):
|
| 79 |
+
block_type = [block_type] * num_layers
|
| 80 |
+
elif len(block_type) != num_layers:
|
| 81 |
+
raise ValueError("The ``block_type`` list should equal to ``num_layers``.")
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.vid_in = NaPatchIn(
|
| 84 |
+
in_channels=vid_in_channels,
|
| 85 |
+
patch_size=patch_size,
|
| 86 |
+
dim=vid_dim,
|
| 87 |
+
)
|
| 88 |
+
self.txt_in = (
|
| 89 |
+
nn.Linear(txt_in_dim, txt_dim)
|
| 90 |
+
if txt_in_dim and txt_in_dim != txt_dim
|
| 91 |
+
else nn.Identity()
|
| 92 |
+
)
|
| 93 |
+
self.emb_in = TimeEmbedding(
|
| 94 |
+
sinusoidal_dim=256,
|
| 95 |
+
hidden_dim=max(vid_dim, txt_dim),
|
| 96 |
+
output_dim=emb_dim,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
if window is None or isinstance(window[0], int):
|
| 100 |
+
window = [window] * num_layers
|
| 101 |
+
if window_method is None or isinstance(window_method, str):
|
| 102 |
+
window_method = [window_method] * num_layers
|
| 103 |
+
if temporal_window_size is None or isinstance(temporal_window_size, int):
|
| 104 |
+
temporal_window_size = [temporal_window_size] * num_layers
|
| 105 |
+
if temporal_shifted is None or isinstance(temporal_shifted, bool):
|
| 106 |
+
temporal_shifted = [temporal_shifted] * num_layers
|
| 107 |
+
|
| 108 |
+
self.blocks = nn.ModuleList(
|
| 109 |
+
[
|
| 110 |
+
get_nablock(block_type[i])(
|
| 111 |
+
vid_dim=vid_dim,
|
| 112 |
+
txt_dim=txt_dim,
|
| 113 |
+
emb_dim=emb_dim,
|
| 114 |
+
heads=heads,
|
| 115 |
+
head_dim=head_dim,
|
| 116 |
+
expand_ratio=expand_ratio,
|
| 117 |
+
norm=norm,
|
| 118 |
+
norm_eps=norm_eps,
|
| 119 |
+
ada=ada,
|
| 120 |
+
qk_bias=qk_bias,
|
| 121 |
+
qk_rope=qk_rope,
|
| 122 |
+
qk_norm=qk_norm,
|
| 123 |
+
shared_qkv=shared_qkv,
|
| 124 |
+
shared_mlp=shared_mlp,
|
| 125 |
+
mlp_type=mlp_type,
|
| 126 |
+
window=window[i],
|
| 127 |
+
window_method=window_method[i],
|
| 128 |
+
temporal_window_size=temporal_window_size[i],
|
| 129 |
+
temporal_shifted=temporal_shifted[i],
|
| 130 |
+
**kwargs,
|
| 131 |
+
)
|
| 132 |
+
for i in range(num_layers)
|
| 133 |
+
]
|
| 134 |
+
)
|
| 135 |
+
self.vid_out = NaPatchOut(
|
| 136 |
+
out_channels=vid_out_channels,
|
| 137 |
+
patch_size=patch_size,
|
| 138 |
+
dim=vid_dim,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
self.need_txt_repeat = block_type[0] in [
|
| 142 |
+
"mmdit_stwin",
|
| 143 |
+
"mmdit_stwin_spatial",
|
| 144 |
+
"mmdit_stwin_3d_spatial",
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
def set_gradient_checkpointing(self, enable: bool):
|
| 148 |
+
self.gradient_checkpointing = enable
|
| 149 |
+
|
| 150 |
+
def forward(
|
| 151 |
+
self,
|
| 152 |
+
vid: torch.FloatTensor, # l c
|
| 153 |
+
txt: torch.FloatTensor, # l c
|
| 154 |
+
vid_shape: torch.LongTensor, # b 3
|
| 155 |
+
txt_shape: torch.LongTensor, # b 1
|
| 156 |
+
timestep: Union[int, float, torch.IntTensor, torch.FloatTensor], # b
|
| 157 |
+
disable_cache: bool = True, # for test
|
| 158 |
+
):
|
| 159 |
+
# Text input.
|
| 160 |
+
if txt_shape.size(-1) == 1 and self.need_txt_repeat:
|
| 161 |
+
txt, txt_shape = na.repeat(txt, txt_shape, "l c -> t l c", t=vid_shape[:, 0])
|
| 162 |
+
# slice vid after patching in when using sequence parallelism
|
| 163 |
+
txt = slice_inputs(txt, dim=0)
|
| 164 |
+
txt = self.txt_in(txt)
|
| 165 |
+
|
| 166 |
+
# Video input.
|
| 167 |
+
# Sequence parallel slicing is done inside patching class.
|
| 168 |
+
vid, vid_shape = self.vid_in(vid, vid_shape)
|
| 169 |
+
|
| 170 |
+
# Embedding input.
|
| 171 |
+
emb = self.emb_in(timestep, device=vid.device, dtype=vid.dtype)
|
| 172 |
+
|
| 173 |
+
# Body
|
| 174 |
+
cache = Cache(disable=disable_cache)
|
| 175 |
+
for i, block in enumerate(self.blocks):
|
| 176 |
+
vid, txt, vid_shape, txt_shape = gradient_checkpointing(
|
| 177 |
+
enabled=(self.gradient_checkpointing and self.training),
|
| 178 |
+
module=block,
|
| 179 |
+
vid=vid,
|
| 180 |
+
txt=txt,
|
| 181 |
+
vid_shape=vid_shape,
|
| 182 |
+
txt_shape=txt_shape,
|
| 183 |
+
emb=emb,
|
| 184 |
+
cache=cache,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
vid, vid_shape = self.vid_out(vid, vid_shape, cache)
|
| 188 |
+
return NaDiTOutput(vid_sample=vid)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class NaDiTUpscaler(nn.Module):
|
| 192 |
+
"""
|
| 193 |
+
Native Resolution Diffusion Transformer (NaDiT)
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
gradient_checkpointing = False
|
| 197 |
+
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
vid_in_channels: int,
|
| 201 |
+
vid_out_channels: int,
|
| 202 |
+
vid_dim: int,
|
| 203 |
+
txt_in_dim: Optional[int],
|
| 204 |
+
txt_dim: Optional[int],
|
| 205 |
+
emb_dim: int,
|
| 206 |
+
heads: int,
|
| 207 |
+
head_dim: int,
|
| 208 |
+
expand_ratio: int,
|
| 209 |
+
norm: Optional[str],
|
| 210 |
+
norm_eps: float,
|
| 211 |
+
ada: str,
|
| 212 |
+
qk_bias: bool,
|
| 213 |
+
qk_rope: bool,
|
| 214 |
+
qk_norm: Optional[str],
|
| 215 |
+
patch_size: Union[int, Tuple[int, int, int]],
|
| 216 |
+
num_layers: int,
|
| 217 |
+
block_type: Union[str, Tuple[str]],
|
| 218 |
+
shared_qkv: bool = False,
|
| 219 |
+
shared_mlp: bool = False,
|
| 220 |
+
mlp_type: str = "normal",
|
| 221 |
+
window: Optional[Tuple] = None,
|
| 222 |
+
window_method: Optional[Tuple[str]] = None,
|
| 223 |
+
temporal_window_size: int = None,
|
| 224 |
+
temporal_shifted: bool = False,
|
| 225 |
+
**kwargs,
|
| 226 |
+
):
|
| 227 |
+
ada = get_ada_layer(ada)
|
| 228 |
+
norm = get_norm_layer(norm)
|
| 229 |
+
qk_norm = get_norm_layer(qk_norm)
|
| 230 |
+
if isinstance(block_type, str):
|
| 231 |
+
block_type = [block_type] * num_layers
|
| 232 |
+
elif len(block_type) != num_layers:
|
| 233 |
+
raise ValueError("The ``block_type`` list should equal to ``num_layers``.")
|
| 234 |
+
super().__init__()
|
| 235 |
+
self.vid_in = NaPatchIn(
|
| 236 |
+
in_channels=vid_in_channels,
|
| 237 |
+
patch_size=patch_size,
|
| 238 |
+
dim=vid_dim,
|
| 239 |
+
)
|
| 240 |
+
self.txt_in = (
|
| 241 |
+
nn.Linear(txt_in_dim, txt_dim)
|
| 242 |
+
if txt_in_dim and txt_in_dim != txt_dim
|
| 243 |
+
else nn.Identity()
|
| 244 |
+
)
|
| 245 |
+
self.emb_in = TimeEmbedding(
|
| 246 |
+
sinusoidal_dim=256,
|
| 247 |
+
hidden_dim=max(vid_dim, txt_dim),
|
| 248 |
+
output_dim=emb_dim,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self.emb_scale = TimeEmbedding(
|
| 252 |
+
sinusoidal_dim=256,
|
| 253 |
+
hidden_dim=max(vid_dim, txt_dim),
|
| 254 |
+
output_dim=emb_dim,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if window is None or isinstance(window[0], int):
|
| 258 |
+
window = [window] * num_layers
|
| 259 |
+
if window_method is None or isinstance(window_method, str):
|
| 260 |
+
window_method = [window_method] * num_layers
|
| 261 |
+
if temporal_window_size is None or isinstance(temporal_window_size, int):
|
| 262 |
+
temporal_window_size = [temporal_window_size] * num_layers
|
| 263 |
+
if temporal_shifted is None or isinstance(temporal_shifted, bool):
|
| 264 |
+
temporal_shifted = [temporal_shifted] * num_layers
|
| 265 |
+
|
| 266 |
+
self.blocks = nn.ModuleList(
|
| 267 |
+
[
|
| 268 |
+
get_nablock(block_type[i])(
|
| 269 |
+
vid_dim=vid_dim,
|
| 270 |
+
txt_dim=txt_dim,
|
| 271 |
+
emb_dim=emb_dim,
|
| 272 |
+
heads=heads,
|
| 273 |
+
head_dim=head_dim,
|
| 274 |
+
expand_ratio=expand_ratio,
|
| 275 |
+
norm=norm,
|
| 276 |
+
norm_eps=norm_eps,
|
| 277 |
+
ada=ada,
|
| 278 |
+
qk_bias=qk_bias,
|
| 279 |
+
qk_rope=qk_rope,
|
| 280 |
+
qk_norm=qk_norm,
|
| 281 |
+
shared_qkv=shared_qkv,
|
| 282 |
+
shared_mlp=shared_mlp,
|
| 283 |
+
mlp_type=mlp_type,
|
| 284 |
+
window=window[i],
|
| 285 |
+
window_method=window_method[i],
|
| 286 |
+
temporal_window_size=temporal_window_size[i],
|
| 287 |
+
temporal_shifted=temporal_shifted[i],
|
| 288 |
+
**kwargs,
|
| 289 |
+
)
|
| 290 |
+
for i in range(num_layers)
|
| 291 |
+
]
|
| 292 |
+
)
|
| 293 |
+
self.vid_out = NaPatchOut(
|
| 294 |
+
out_channels=vid_out_channels,
|
| 295 |
+
patch_size=patch_size,
|
| 296 |
+
dim=vid_dim,
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
self.need_txt_repeat = block_type[0] in [
|
| 300 |
+
"mmdit_stwin",
|
| 301 |
+
"mmdit_stwin_spatial",
|
| 302 |
+
"mmdit_stwin_3d_spatial",
|
| 303 |
+
]
|
| 304 |
+
|
| 305 |
+
def set_gradient_checkpointing(self, enable: bool):
|
| 306 |
+
self.gradient_checkpointing = enable
|
| 307 |
+
|
| 308 |
+
def forward(
|
| 309 |
+
self,
|
| 310 |
+
vid: torch.FloatTensor, # l c
|
| 311 |
+
txt: torch.FloatTensor, # l c
|
| 312 |
+
vid_shape: torch.LongTensor, # b 3
|
| 313 |
+
txt_shape: torch.LongTensor, # b 1
|
| 314 |
+
timestep: Union[int, float, torch.IntTensor, torch.FloatTensor], # b
|
| 315 |
+
downscale: Union[int, float, torch.IntTensor, torch.FloatTensor], # b
|
| 316 |
+
disable_cache: bool = False, # for test
|
| 317 |
+
):
|
| 318 |
+
|
| 319 |
+
# Text input.
|
| 320 |
+
if txt_shape.size(-1) == 1 and self.need_txt_repeat:
|
| 321 |
+
txt, txt_shape = na.repeat(txt, txt_shape, "l c -> t l c", t=vid_shape[:, 0])
|
| 322 |
+
# slice vid after patching in when using sequence parallelism
|
| 323 |
+
txt = slice_inputs(txt, dim=0)
|
| 324 |
+
txt = self.txt_in(txt)
|
| 325 |
+
|
| 326 |
+
# Video input.
|
| 327 |
+
# Sequence parallel slicing is done inside patching class.
|
| 328 |
+
vid, vid_shape = self.vid_in(vid, vid_shape)
|
| 329 |
+
|
| 330 |
+
# Embedding input.
|
| 331 |
+
emb = self.emb_in(timestep, device=vid.device, dtype=vid.dtype)
|
| 332 |
+
emb_scale = self.emb_scale(downscale, device=vid.device, dtype=vid.dtype)
|
| 333 |
+
emb = emb + emb_scale
|
| 334 |
+
|
| 335 |
+
# Body
|
| 336 |
+
cache = Cache(disable=disable_cache)
|
| 337 |
+
for i, block in enumerate(self.blocks):
|
| 338 |
+
vid, txt, vid_shape, txt_shape = gradient_checkpointing(
|
| 339 |
+
enabled=(self.gradient_checkpointing and self.training),
|
| 340 |
+
module=block,
|
| 341 |
+
vid=vid,
|
| 342 |
+
txt=txt,
|
| 343 |
+
vid_shape=vid_shape,
|
| 344 |
+
txt_shape=txt_shape,
|
| 345 |
+
emb=emb,
|
| 346 |
+
cache=cache,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
vid, vid_shape = self.vid_out(vid, vid_shape, cache)
|
| 350 |
+
return NaDiTOutput(vid_sample=vid)
|
models/dit/normalization.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Callable, Optional
|
| 16 |
+
from diffusers.models.normalization import RMSNorm
|
| 17 |
+
from torch import nn
|
| 18 |
+
|
| 19 |
+
# (dim: int, eps: float, elementwise_affine: bool)
|
| 20 |
+
norm_layer_type = Callable[[int, float, bool], nn.Module]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_norm_layer(norm_type: Optional[str]) -> norm_layer_type:
|
| 24 |
+
|
| 25 |
+
def _norm_layer(dim: int, eps: float, elementwise_affine: bool):
|
| 26 |
+
if norm_type is None:
|
| 27 |
+
return nn.Identity()
|
| 28 |
+
|
| 29 |
+
if norm_type == "layer":
|
| 30 |
+
return nn.LayerNorm(
|
| 31 |
+
normalized_shape=dim,
|
| 32 |
+
eps=eps,
|
| 33 |
+
elementwise_affine=elementwise_affine,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
if norm_type == "rms":
|
| 37 |
+
return RMSNorm(
|
| 38 |
+
dim=dim,
|
| 39 |
+
eps=eps,
|
| 40 |
+
elementwise_affine=elementwise_affine,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
if norm_type == "fusedln":
|
| 44 |
+
from apex.normalization import FusedLayerNorm
|
| 45 |
+
|
| 46 |
+
return FusedLayerNorm(
|
| 47 |
+
normalized_shape=dim,
|
| 48 |
+
elementwise_affine=elementwise_affine,
|
| 49 |
+
eps=eps,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
if norm_type == "fusedrms":
|
| 53 |
+
from apex.normalization import FusedRMSNorm
|
| 54 |
+
|
| 55 |
+
return FusedRMSNorm(
|
| 56 |
+
normalized_shape=dim,
|
| 57 |
+
elementwise_affine=elementwise_affine,
|
| 58 |
+
eps=eps,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
raise NotImplementedError(f"{norm_type} is not supported")
|
| 62 |
+
|
| 63 |
+
return _norm_layer
|
models/dit/patch.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Tuple, Union
|
| 16 |
+
import torch
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
from torch import nn
|
| 19 |
+
from torch.nn.modules.utils import _triple
|
| 20 |
+
|
| 21 |
+
from common.cache import Cache
|
| 22 |
+
from common.distributed.ops import gather_outputs, slice_inputs
|
| 23 |
+
|
| 24 |
+
from . import na
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class PatchIn(nn.Module):
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
in_channels: int,
|
| 31 |
+
patch_size: Union[int, Tuple[int, int, int]],
|
| 32 |
+
dim: int,
|
| 33 |
+
):
|
| 34 |
+
super().__init__()
|
| 35 |
+
t, h, w = _triple(patch_size)
|
| 36 |
+
self.patch_size = t, h, w
|
| 37 |
+
self.proj = nn.Linear(in_channels * t * h * w, dim)
|
| 38 |
+
|
| 39 |
+
def forward(
|
| 40 |
+
self,
|
| 41 |
+
vid: torch.Tensor,
|
| 42 |
+
) -> torch.Tensor:
|
| 43 |
+
t, h, w = self.patch_size
|
| 44 |
+
vid = rearrange(vid, "b c (T t) (H h) (W w) -> b T H W (t h w c)", t=t, h=h, w=w)
|
| 45 |
+
vid = self.proj(vid)
|
| 46 |
+
return vid
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class PatchOut(nn.Module):
|
| 50 |
+
def __init__(
|
| 51 |
+
self,
|
| 52 |
+
out_channels: int,
|
| 53 |
+
patch_size: Union[int, Tuple[int, int, int]],
|
| 54 |
+
dim: int,
|
| 55 |
+
):
|
| 56 |
+
super().__init__()
|
| 57 |
+
t, h, w = _triple(patch_size)
|
| 58 |
+
self.patch_size = t, h, w
|
| 59 |
+
self.proj = nn.Linear(dim, out_channels * t * h * w)
|
| 60 |
+
|
| 61 |
+
def forward(
|
| 62 |
+
self,
|
| 63 |
+
vid: torch.Tensor,
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
+
t, h, w = self.patch_size
|
| 66 |
+
vid = self.proj(vid)
|
| 67 |
+
vid = rearrange(vid, "b T H W (t h w c) -> b c (T t) (H h) (W w)", t=t, h=h, w=w)
|
| 68 |
+
return vid
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class NaPatchIn(PatchIn):
|
| 72 |
+
def forward(
|
| 73 |
+
self,
|
| 74 |
+
vid: torch.Tensor, # l c
|
| 75 |
+
vid_shape: torch.LongTensor,
|
| 76 |
+
) -> torch.Tensor:
|
| 77 |
+
t, h, w = self.patch_size
|
| 78 |
+
if not (t == h == w == 1):
|
| 79 |
+
vid, vid_shape = na.rearrange(
|
| 80 |
+
vid, vid_shape, "(T t) (H h) (W w) c -> T H W (t h w c)", t=t, h=h, w=w
|
| 81 |
+
)
|
| 82 |
+
# slice vid after patching in when using sequence parallelism
|
| 83 |
+
vid = slice_inputs(vid, dim=0)
|
| 84 |
+
vid = self.proj(vid)
|
| 85 |
+
return vid, vid_shape
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class NaPatchOut(PatchOut):
|
| 89 |
+
def forward(
|
| 90 |
+
self,
|
| 91 |
+
vid: torch.FloatTensor, # l c
|
| 92 |
+
vid_shape: torch.LongTensor,
|
| 93 |
+
cache: Cache = Cache(disable=True),
|
| 94 |
+
) -> Tuple[
|
| 95 |
+
torch.FloatTensor,
|
| 96 |
+
torch.LongTensor,
|
| 97 |
+
]:
|
| 98 |
+
t, h, w = self.patch_size
|
| 99 |
+
vid = self.proj(vid)
|
| 100 |
+
# gather vid before patching out when enabling sequence parallelism
|
| 101 |
+
vid = gather_outputs(
|
| 102 |
+
vid,
|
| 103 |
+
gather_dim=0,
|
| 104 |
+
padding_dim=0,
|
| 105 |
+
unpad_shape=vid_shape,
|
| 106 |
+
cache=cache.namespace("vid"),
|
| 107 |
+
)
|
| 108 |
+
if not (t == h == w == 1):
|
| 109 |
+
vid, vid_shape = na.rearrange(
|
| 110 |
+
vid, vid_shape, "T H W (t h w c) -> (T t) (H h) (W w) c", t=t, h=h, w=w
|
| 111 |
+
)
|
| 112 |
+
return vid, vid_shape
|
models/dit/rope.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from functools import lru_cache
|
| 16 |
+
from typing import Tuple
|
| 17 |
+
import torch
|
| 18 |
+
from einops import rearrange
|
| 19 |
+
from rotary_embedding_torch import RotaryEmbedding, apply_rotary_emb
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
from common.cache import Cache
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class RotaryEmbeddingBase(nn.Module):
|
| 26 |
+
def __init__(self, dim: int, rope_dim: int):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.rope = RotaryEmbedding(
|
| 29 |
+
dim=dim // rope_dim,
|
| 30 |
+
freqs_for="pixel",
|
| 31 |
+
max_freq=256,
|
| 32 |
+
)
|
| 33 |
+
# 1. Set model.requires_grad_(True) after model creation will make
|
| 34 |
+
# the `requires_grad=False` for rope freqs no longer hold.
|
| 35 |
+
# 2. Even if we don't set requires_grad_(True) explicitly,
|
| 36 |
+
# FSDP is not memory efficient when handling fsdp_wrap
|
| 37 |
+
# with mixed requires_grad=True/False.
|
| 38 |
+
# With above consideration, it is easier just remove the freqs
|
| 39 |
+
# out of nn.Parameters when `learned_freq=False`
|
| 40 |
+
freqs = self.rope.freqs
|
| 41 |
+
del self.rope.freqs
|
| 42 |
+
self.rope.register_buffer("freqs", freqs.data)
|
| 43 |
+
|
| 44 |
+
@lru_cache(maxsize=128)
|
| 45 |
+
def get_axial_freqs(self, *dims):
|
| 46 |
+
return self.rope.get_axial_freqs(*dims)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class RotaryEmbedding3d(RotaryEmbeddingBase):
|
| 50 |
+
def __init__(self, dim: int):
|
| 51 |
+
super().__init__(dim, rope_dim=3)
|
| 52 |
+
|
| 53 |
+
def forward(
|
| 54 |
+
self,
|
| 55 |
+
q: torch.FloatTensor, # b h l d
|
| 56 |
+
k: torch.FloatTensor, # b h l d
|
| 57 |
+
size: Tuple[int, int, int],
|
| 58 |
+
) -> Tuple[
|
| 59 |
+
torch.FloatTensor,
|
| 60 |
+
torch.FloatTensor,
|
| 61 |
+
]:
|
| 62 |
+
T, H, W = size
|
| 63 |
+
freqs = self.get_axial_freqs(T, H, W)
|
| 64 |
+
q = rearrange(q, "b h (T H W) d -> b h T H W d", T=T, H=H, W=W)
|
| 65 |
+
k = rearrange(k, "b h (T H W) d -> b h T H W d", T=T, H=H, W=W)
|
| 66 |
+
q = apply_rotary_emb(freqs, q)
|
| 67 |
+
k = apply_rotary_emb(freqs, k)
|
| 68 |
+
q = rearrange(q, "b h T H W d -> b h (T H W) d")
|
| 69 |
+
k = rearrange(k, "b h T H W d -> b h (T H W) d")
|
| 70 |
+
return q, k
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class NaRotaryEmbedding3d(RotaryEmbedding3d):
|
| 74 |
+
def forward(
|
| 75 |
+
self,
|
| 76 |
+
q: torch.FloatTensor, # L h d
|
| 77 |
+
k: torch.FloatTensor, # L h d
|
| 78 |
+
shape: torch.LongTensor,
|
| 79 |
+
cache: Cache,
|
| 80 |
+
) -> Tuple[
|
| 81 |
+
torch.FloatTensor,
|
| 82 |
+
torch.FloatTensor,
|
| 83 |
+
]:
|
| 84 |
+
freqs = cache("rope_freqs_3d", lambda: self.get_freqs(shape))
|
| 85 |
+
q = rearrange(q, "L h d -> h L d")
|
| 86 |
+
k = rearrange(k, "L h d -> h L d")
|
| 87 |
+
q = apply_rotary_emb(freqs, q.float()).to(q.dtype)
|
| 88 |
+
k = apply_rotary_emb(freqs, k.float()).to(k.dtype)
|
| 89 |
+
q = rearrange(q, "h L d -> L h d")
|
| 90 |
+
k = rearrange(k, "h L d -> L h d")
|
| 91 |
+
return q, k
|
| 92 |
+
|
| 93 |
+
def get_freqs(
|
| 94 |
+
self,
|
| 95 |
+
shape: torch.LongTensor,
|
| 96 |
+
) -> torch.Tensor:
|
| 97 |
+
freq_list = []
|
| 98 |
+
for f, h, w in shape.tolist():
|
| 99 |
+
freqs = self.get_axial_freqs(f, h, w)
|
| 100 |
+
freq_list.append(freqs.view(-1, freqs.size(-1)))
|
| 101 |
+
return torch.cat(freq_list, dim=0)
|
models/dit/window.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from math import ceil
|
| 16 |
+
from typing import Tuple
|
| 17 |
+
import math
|
| 18 |
+
|
| 19 |
+
def get_window_op(name: str):
|
| 20 |
+
if name == "720pwin_by_size_bysize":
|
| 21 |
+
return make_720Pwindows_bysize
|
| 22 |
+
if name == "720pswin_by_size_bysize":
|
| 23 |
+
return make_shifted_720Pwindows_bysize
|
| 24 |
+
raise ValueError(f"Unknown windowing method: {name}")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# -------------------------------- Windowing -------------------------------- #
|
| 28 |
+
def make_720Pwindows_bysize(size: Tuple[int, int, int], num_windows: Tuple[int, int, int]):
|
| 29 |
+
t, h, w = size
|
| 30 |
+
resized_nt, resized_nh, resized_nw = num_windows
|
| 31 |
+
#cal windows under 720p
|
| 32 |
+
scale = math.sqrt((45 * 80) / (h * w))
|
| 33 |
+
resized_h, resized_w = round(h * scale), round(w * scale)
|
| 34 |
+
wh, ww = ceil(resized_h / resized_nh), ceil(resized_w / resized_nw) # window size.
|
| 35 |
+
wt = ceil(min(t, 30) / resized_nt) # window size.
|
| 36 |
+
nt, nh, nw = ceil(t / wt), ceil(h / wh), ceil(w / ww) # window size.
|
| 37 |
+
return [
|
| 38 |
+
(
|
| 39 |
+
slice(it * wt, min((it + 1) * wt, t)),
|
| 40 |
+
slice(ih * wh, min((ih + 1) * wh, h)),
|
| 41 |
+
slice(iw * ww, min((iw + 1) * ww, w)),
|
| 42 |
+
)
|
| 43 |
+
for iw in range(nw)
|
| 44 |
+
if min((iw + 1) * ww, w) > iw * ww
|
| 45 |
+
for ih in range(nh)
|
| 46 |
+
if min((ih + 1) * wh, h) > ih * wh
|
| 47 |
+
for it in range(nt)
|
| 48 |
+
if min((it + 1) * wt, t) > it * wt
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
def make_shifted_720Pwindows_bysize(size: Tuple[int, int, int], num_windows: Tuple[int, int, int]):
|
| 52 |
+
t, h, w = size
|
| 53 |
+
resized_nt, resized_nh, resized_nw = num_windows
|
| 54 |
+
#cal windows under 720p
|
| 55 |
+
scale = math.sqrt((45 * 80) / (h * w))
|
| 56 |
+
resized_h, resized_w = round(h * scale), round(w * scale)
|
| 57 |
+
wh, ww = ceil(resized_h / resized_nh), ceil(resized_w / resized_nw) # window size.
|
| 58 |
+
wt = ceil(min(t, 30) / resized_nt) # window size.
|
| 59 |
+
|
| 60 |
+
st, sh, sw = ( # shift size.
|
| 61 |
+
0.5 if wt < t else 0,
|
| 62 |
+
0.5 if wh < h else 0,
|
| 63 |
+
0.5 if ww < w else 0,
|
| 64 |
+
)
|
| 65 |
+
nt, nh, nw = ceil((t - st) / wt), ceil((h - sh) / wh), ceil((w - sw) / ww) # window size.
|
| 66 |
+
nt, nh, nw = ( # number of window.
|
| 67 |
+
nt + 1 if st > 0 else 1,
|
| 68 |
+
nh + 1 if sh > 0 else 1,
|
| 69 |
+
nw + 1 if sw > 0 else 1,
|
| 70 |
+
)
|
| 71 |
+
return [
|
| 72 |
+
(
|
| 73 |
+
slice(max(int((it - st) * wt), 0), min(int((it - st + 1) * wt), t)),
|
| 74 |
+
slice(max(int((ih - sh) * wh), 0), min(int((ih - sh + 1) * wh), h)),
|
| 75 |
+
slice(max(int((iw - sw) * ww), 0), min(int((iw - sw + 1) * ww), w)),
|
| 76 |
+
)
|
| 77 |
+
for iw in range(nw)
|
| 78 |
+
if min(int((iw - sw + 1) * ww), w) > max(int((iw - sw) * ww), 0)
|
| 79 |
+
for ih in range(nh)
|
| 80 |
+
if min(int((ih - sh + 1) * wh), h) > max(int((ih - sh) * wh), 0)
|
| 81 |
+
for it in range(nt)
|
| 82 |
+
if min(int((it - st + 1) * wt), t) > max(int((it - st) * wt), 0)
|
| 83 |
+
]
|
models/dit_v2/attention.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
|
| 18 |
+
from flash_attn import flash_attn_varlen_func
|
| 19 |
+
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
class TorchAttention(nn.Module):
|
| 23 |
+
def tflops(self, args, kwargs, output) -> float:
|
| 24 |
+
assert len(args) == 0 or len(args) > 2, "query, key should both provided by args / kwargs"
|
| 25 |
+
q = kwargs.get("query") or args[0]
|
| 26 |
+
k = kwargs.get("key") or args[1]
|
| 27 |
+
b, h, sq, d = q.shape
|
| 28 |
+
b, h, sk, d = k.shape
|
| 29 |
+
return b * h * (4 * d * (sq / 1e6) * (sk / 1e6))
|
| 30 |
+
|
| 31 |
+
def forward(self, *args, **kwargs):
|
| 32 |
+
return F.scaled_dot_product_attention(*args, **kwargs)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FlashAttentionVarlen(nn.Module):
|
| 36 |
+
def tflops(self, args, kwargs, output) -> float:
|
| 37 |
+
cu_seqlens_q = kwargs["cu_seqlens_q"]
|
| 38 |
+
cu_seqlens_k = kwargs["cu_seqlens_k"]
|
| 39 |
+
_, h, d = output.shape
|
| 40 |
+
seqlens_q = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]) / 1e6
|
| 41 |
+
seqlens_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]) / 1e6
|
| 42 |
+
return h * (4 * d * (seqlens_q * seqlens_k).sum())
|
| 43 |
+
|
| 44 |
+
def forward(self, *args, **kwargs):
|
| 45 |
+
kwargs["deterministic"] = torch.are_deterministic_algorithms_enabled()
|
| 46 |
+
return flash_attn_varlen_func(*args, **kwargs)
|
models/dit_v2/embedding.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional, Union
|
| 16 |
+
import torch
|
| 17 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def emb_add(emb1: torch.Tensor, emb2: Optional[torch.Tensor]):
|
| 22 |
+
return emb1 if emb2 is None else emb1 + emb2
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class TimeEmbedding(nn.Module):
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
sinusoidal_dim: int,
|
| 29 |
+
hidden_dim: int,
|
| 30 |
+
output_dim: int,
|
| 31 |
+
):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.sinusoidal_dim = sinusoidal_dim
|
| 34 |
+
self.proj_in = nn.Linear(sinusoidal_dim, hidden_dim)
|
| 35 |
+
self.proj_hid = nn.Linear(hidden_dim, hidden_dim)
|
| 36 |
+
self.proj_out = nn.Linear(hidden_dim, output_dim)
|
| 37 |
+
self.act = nn.SiLU()
|
| 38 |
+
|
| 39 |
+
def forward(
|
| 40 |
+
self,
|
| 41 |
+
timestep: Union[int, float, torch.IntTensor, torch.FloatTensor],
|
| 42 |
+
device: torch.device,
|
| 43 |
+
dtype: torch.dtype,
|
| 44 |
+
) -> torch.FloatTensor:
|
| 45 |
+
if not torch.is_tensor(timestep):
|
| 46 |
+
timestep = torch.tensor([timestep], device=device, dtype=dtype)
|
| 47 |
+
if timestep.ndim == 0:
|
| 48 |
+
timestep = timestep[None]
|
| 49 |
+
|
| 50 |
+
emb = get_timestep_embedding(
|
| 51 |
+
timesteps=timestep,
|
| 52 |
+
embedding_dim=self.sinusoidal_dim,
|
| 53 |
+
flip_sin_to_cos=False,
|
| 54 |
+
downscale_freq_shift=0,
|
| 55 |
+
)
|
| 56 |
+
emb = emb.to(dtype)
|
| 57 |
+
emb = self.proj_in(emb)
|
| 58 |
+
emb = self.act(emb)
|
| 59 |
+
emb = self.proj_hid(emb)
|
| 60 |
+
emb = self.act(emb)
|
| 61 |
+
emb = self.proj_out(emb)
|
| 62 |
+
return emb
|
models/dit_v2/mlp.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def get_mlp(mlp_type: Optional[str] = "normal"):
|
| 22 |
+
if mlp_type == "normal":
|
| 23 |
+
return MLP
|
| 24 |
+
elif mlp_type == "swiglu":
|
| 25 |
+
return SwiGLUMLP
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class MLP(nn.Module):
|
| 29 |
+
def __init__(
|
| 30 |
+
self,
|
| 31 |
+
dim: int,
|
| 32 |
+
expand_ratio: int,
|
| 33 |
+
):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.proj_in = nn.Linear(dim, dim * expand_ratio)
|
| 36 |
+
self.act = nn.GELU("tanh")
|
| 37 |
+
self.proj_out = nn.Linear(dim * expand_ratio, dim)
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 40 |
+
x = self.proj_in(x)
|
| 41 |
+
x = self.act(x)
|
| 42 |
+
x = self.proj_out(x)
|
| 43 |
+
return x
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class SwiGLUMLP(nn.Module):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
dim: int,
|
| 50 |
+
expand_ratio: int,
|
| 51 |
+
multiple_of: int = 256,
|
| 52 |
+
):
|
| 53 |
+
super().__init__()
|
| 54 |
+
hidden_dim = int(2 * dim * expand_ratio / 3)
|
| 55 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 56 |
+
self.proj_in_gate = nn.Linear(dim, hidden_dim, bias=False)
|
| 57 |
+
self.proj_out = nn.Linear(hidden_dim, dim, bias=False)
|
| 58 |
+
self.proj_in = nn.Linear(dim, hidden_dim, bias=False)
|
| 59 |
+
|
| 60 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 61 |
+
x = self.proj_out(F.silu(self.proj_in_gate(x)) * self.proj_in(x))
|
| 62 |
+
return x
|
models/dit_v2/mm.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Callable, Dict, List, Tuple
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class MMArg:
|
| 23 |
+
vid: Any
|
| 24 |
+
txt: Any
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(key: str, args: List[Any]) -> List[Any]:
|
| 28 |
+
return [getattr(v, key) if isinstance(v, MMArg) else v for v in args]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_kwargs(key: str, kwargs: Dict[str, Any]) -> Dict[str, Any]:
|
| 32 |
+
return {k: getattr(v, key) if isinstance(v, MMArg) else v for k, v in kwargs.items()}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class MMModule(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
module: Callable[..., nn.Module],
|
| 39 |
+
*args,
|
| 40 |
+
shared_weights: bool = False,
|
| 41 |
+
vid_only: bool = False,
|
| 42 |
+
**kwargs,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.shared_weights = shared_weights
|
| 46 |
+
self.vid_only = vid_only
|
| 47 |
+
if self.shared_weights:
|
| 48 |
+
assert get_args("vid", args) == get_args("txt", args)
|
| 49 |
+
assert get_kwargs("vid", kwargs) == get_kwargs("txt", kwargs)
|
| 50 |
+
self.all = module(*get_args("vid", args), **get_kwargs("vid", kwargs))
|
| 51 |
+
else:
|
| 52 |
+
self.vid = module(*get_args("vid", args), **get_kwargs("vid", kwargs))
|
| 53 |
+
self.txt = (
|
| 54 |
+
module(*get_args("txt", args), **get_kwargs("txt", kwargs))
|
| 55 |
+
if not vid_only
|
| 56 |
+
else None
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
def forward(
|
| 60 |
+
self,
|
| 61 |
+
vid: torch.FloatTensor,
|
| 62 |
+
txt: torch.FloatTensor,
|
| 63 |
+
*args,
|
| 64 |
+
**kwargs,
|
| 65 |
+
) -> Tuple[
|
| 66 |
+
torch.FloatTensor,
|
| 67 |
+
torch.FloatTensor,
|
| 68 |
+
]:
|
| 69 |
+
vid_module = self.vid if not self.shared_weights else self.all
|
| 70 |
+
vid = vid_module(vid, *get_args("vid", args), **get_kwargs("vid", kwargs))
|
| 71 |
+
if not self.vid_only:
|
| 72 |
+
txt_module = self.txt if not self.shared_weights else self.all
|
| 73 |
+
txt = txt_module(txt, *get_args("txt", args), **get_kwargs("txt", kwargs))
|
| 74 |
+
return vid, txt
|
models/dit_v2/modulation.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Callable, List, Optional
|
| 16 |
+
import torch
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from common.cache import Cache
|
| 21 |
+
from common.distributed.ops import slice_inputs
|
| 22 |
+
|
| 23 |
+
# (dim: int, emb_dim: int)
|
| 24 |
+
ada_layer_type = Callable[[int, int], nn.Module]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_ada_layer(ada_layer: str) -> ada_layer_type:
|
| 28 |
+
if ada_layer == "single":
|
| 29 |
+
return AdaSingle
|
| 30 |
+
raise NotImplementedError(f"{ada_layer} is not supported")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def expand_dims(x: torch.Tensor, dim: int, ndim: int):
|
| 34 |
+
"""
|
| 35 |
+
Expand tensor "x" to "ndim" by adding empty dims at "dim".
|
| 36 |
+
Example: x is (b d), target ndim is 5, add dim at 1, return (b 1 1 1 d).
|
| 37 |
+
"""
|
| 38 |
+
shape = x.shape
|
| 39 |
+
shape = shape[:dim] + (1,) * (ndim - len(shape)) + shape[dim:]
|
| 40 |
+
return x.reshape(shape)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class AdaSingle(nn.Module):
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
dim: int,
|
| 47 |
+
emb_dim: int,
|
| 48 |
+
layers: List[str],
|
| 49 |
+
modes: List[str] = ["in", "out"],
|
| 50 |
+
):
|
| 51 |
+
assert emb_dim == 6 * dim, "AdaSingle requires emb_dim == 6 * dim"
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.dim = dim
|
| 54 |
+
self.emb_dim = emb_dim
|
| 55 |
+
self.layers = layers
|
| 56 |
+
for l in layers:
|
| 57 |
+
if "in" in modes:
|
| 58 |
+
self.register_parameter(f"{l}_shift", nn.Parameter(torch.randn(dim) / dim**0.5))
|
| 59 |
+
self.register_parameter(
|
| 60 |
+
f"{l}_scale", nn.Parameter(torch.randn(dim) / dim**0.5 + 1)
|
| 61 |
+
)
|
| 62 |
+
if "out" in modes:
|
| 63 |
+
self.register_parameter(f"{l}_gate", nn.Parameter(torch.randn(dim) / dim**0.5))
|
| 64 |
+
|
| 65 |
+
def forward(
|
| 66 |
+
self,
|
| 67 |
+
hid: torch.FloatTensor, # b ... c
|
| 68 |
+
emb: torch.FloatTensor, # b d
|
| 69 |
+
layer: str,
|
| 70 |
+
mode: str,
|
| 71 |
+
cache: Cache = Cache(disable=True),
|
| 72 |
+
branch_tag: str = "",
|
| 73 |
+
hid_len: Optional[torch.LongTensor] = None, # b
|
| 74 |
+
) -> torch.FloatTensor:
|
| 75 |
+
idx = self.layers.index(layer)
|
| 76 |
+
emb = rearrange(emb, "b (d l g) -> b d l g", l=len(self.layers), g=3)[..., idx, :]
|
| 77 |
+
emb = expand_dims(emb, 1, hid.ndim + 1)
|
| 78 |
+
|
| 79 |
+
if hid_len is not None:
|
| 80 |
+
emb = cache(
|
| 81 |
+
f"emb_repeat_{idx}_{branch_tag}",
|
| 82 |
+
lambda: slice_inputs(
|
| 83 |
+
torch.cat([e.repeat(l, *([1] * e.ndim)) for e, l in zip(emb, hid_len)]),
|
| 84 |
+
dim=0,
|
| 85 |
+
),
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
shiftA, scaleA, gateA = emb.unbind(-1)
|
| 89 |
+
shiftB, scaleB, gateB = (
|
| 90 |
+
getattr(self, f"{layer}_shift", None),
|
| 91 |
+
getattr(self, f"{layer}_scale", None),
|
| 92 |
+
getattr(self, f"{layer}_gate", None),
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if mode == "in":
|
| 96 |
+
return hid.mul_(scaleA + scaleB).add_(shiftA + shiftB)
|
| 97 |
+
if mode == "out":
|
| 98 |
+
return hid.mul_(gateA + gateB)
|
| 99 |
+
raise NotImplementedError
|
| 100 |
+
|
| 101 |
+
def extra_repr(self) -> str:
|
| 102 |
+
return f"dim={self.dim}, emb_dim={self.emb_dim}, layers={self.layers}"
|
models/dit_v2/na.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
# //
|
| 3 |
+
# // Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# // you may not use this file except in compliance with the License.
|
| 5 |
+
# // You may obtain a copy of the License at
|
| 6 |
+
# //
|
| 7 |
+
# // http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
# //
|
| 9 |
+
# // Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# // distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# // See the License for the specific language governing permissions and
|
| 13 |
+
# // limitations under the License.
|
| 14 |
+
|
| 15 |
+
from itertools import chain
|
| 16 |
+
from typing import Callable, Dict, List, Tuple
|
| 17 |
+
import einops
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def flatten(
|
| 22 |
+
hid: List[torch.FloatTensor], # List of (*** c)
|
| 23 |
+
) -> Tuple[
|
| 24 |
+
torch.FloatTensor, # (L c)
|
| 25 |
+
torch.LongTensor, # (b n)
|
| 26 |
+
]:
|
| 27 |
+
assert len(hid) > 0
|
| 28 |
+
shape = torch.stack([torch.tensor(x.shape[:-1], device=hid[0].device) for x in hid])
|
| 29 |
+
hid = torch.cat([x.flatten(0, -2) for x in hid])
|
| 30 |
+
return hid, shape
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def unflatten(
|
| 34 |
+
hid: torch.FloatTensor, # (L c) or (L ... c)
|
| 35 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 36 |
+
) -> List[torch.Tensor]: # List of (*** c) or (*** ... c)
|
| 37 |
+
hid_len = hid_shape.prod(-1)
|
| 38 |
+
hid = hid.split(hid_len.tolist())
|
| 39 |
+
hid = [x.unflatten(0, s.tolist()) for x, s in zip(hid, hid_shape)]
|
| 40 |
+
return hid
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def concat(
|
| 44 |
+
vid: torch.FloatTensor, # (VL ... c)
|
| 45 |
+
txt: torch.FloatTensor, # (TL ... c)
|
| 46 |
+
vid_len: torch.LongTensor, # (b)
|
| 47 |
+
txt_len: torch.LongTensor, # (b)
|
| 48 |
+
) -> torch.FloatTensor: # (L ... c)
|
| 49 |
+
vid = torch.split(vid, vid_len.tolist())
|
| 50 |
+
txt = torch.split(txt, txt_len.tolist())
|
| 51 |
+
return torch.cat(list(chain(*zip(vid, txt))))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def concat_idx(
|
| 55 |
+
vid_len: torch.LongTensor, # (b)
|
| 56 |
+
txt_len: torch.LongTensor, # (b)
|
| 57 |
+
) -> Tuple[
|
| 58 |
+
Callable,
|
| 59 |
+
Callable,
|
| 60 |
+
]:
|
| 61 |
+
device = vid_len.device
|
| 62 |
+
vid_idx = torch.arange(vid_len.sum(), device=device)
|
| 63 |
+
txt_idx = torch.arange(len(vid_idx), len(vid_idx) + txt_len.sum(), device=device)
|
| 64 |
+
tgt_idx = concat(vid_idx, txt_idx, vid_len, txt_len)
|
| 65 |
+
src_idx = torch.argsort(tgt_idx)
|
| 66 |
+
return (
|
| 67 |
+
lambda vid, txt: torch.index_select(torch.cat([vid, txt]), 0, tgt_idx),
|
| 68 |
+
lambda all: torch.index_select(all, 0, src_idx).split([len(vid_idx), len(txt_idx)]),
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def unconcat(
|
| 73 |
+
all: torch.FloatTensor, # (L ... c)
|
| 74 |
+
vid_len: torch.LongTensor, # (b)
|
| 75 |
+
txt_len: torch.LongTensor, # (b)
|
| 76 |
+
) -> Tuple[
|
| 77 |
+
torch.FloatTensor, # (VL ... c)
|
| 78 |
+
torch.FloatTensor, # (TL ... c)
|
| 79 |
+
]:
|
| 80 |
+
interleave_len = list(chain(*zip(vid_len.tolist(), txt_len.tolist())))
|
| 81 |
+
all = all.split(interleave_len)
|
| 82 |
+
vid = torch.cat(all[0::2])
|
| 83 |
+
txt = torch.cat(all[1::2])
|
| 84 |
+
return vid, txt
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def repeat_concat(
|
| 88 |
+
vid: torch.FloatTensor, # (VL ... c)
|
| 89 |
+
txt: torch.FloatTensor, # (TL ... c)
|
| 90 |
+
vid_len: torch.LongTensor, # (n*b)
|
| 91 |
+
txt_len: torch.LongTensor, # (b)
|
| 92 |
+
txt_repeat: List, # (n)
|
| 93 |
+
) -> torch.FloatTensor: # (L ... c)
|
| 94 |
+
vid = torch.split(vid, vid_len.tolist())
|
| 95 |
+
txt = torch.split(txt, txt_len.tolist())
|
| 96 |
+
txt = [[x] * n for x, n in zip(txt, txt_repeat)]
|
| 97 |
+
txt = list(chain(*txt))
|
| 98 |
+
return torch.cat(list(chain(*zip(vid, txt))))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def repeat_concat_idx(
|
| 102 |
+
vid_len: torch.LongTensor, # (n*b)
|
| 103 |
+
txt_len: torch.LongTensor, # (b)
|
| 104 |
+
txt_repeat: torch.LongTensor, # (n)
|
| 105 |
+
) -> Tuple[
|
| 106 |
+
Callable,
|
| 107 |
+
Callable,
|
| 108 |
+
]:
|
| 109 |
+
device = vid_len.device
|
| 110 |
+
vid_idx = torch.arange(vid_len.sum(), device=device)
|
| 111 |
+
txt_idx = torch.arange(len(vid_idx), len(vid_idx) + txt_len.sum(), device=device)
|
| 112 |
+
txt_repeat_list = txt_repeat.tolist()
|
| 113 |
+
tgt_idx = repeat_concat(vid_idx, txt_idx, vid_len, txt_len, txt_repeat)
|
| 114 |
+
src_idx = torch.argsort(tgt_idx)
|
| 115 |
+
txt_idx_len = len(tgt_idx) - len(vid_idx)
|
| 116 |
+
repeat_txt_len = (txt_len * txt_repeat).tolist()
|
| 117 |
+
|
| 118 |
+
def unconcat_coalesce(all):
|
| 119 |
+
"""
|
| 120 |
+
Un-concat vid & txt, and coalesce the repeated txt.
|
| 121 |
+
e.g. vid [0 1 2 3 4 5 6 7 8] -> 3 splits -> [0 1 2] [3 4 5] [6 7 8]
|
| 122 |
+
txt [9 10]
|
| 123 |
+
repeat_concat ==> [0 1 2 9 10 3 4 5 9 10 6 7 8 9 10]
|
| 124 |
+
1. argsort re-index ==> [0 1 2 3 4 5 6 7 8 9 9 9 10 10 10]
|
| 125 |
+
split ==> vid_out [0 1 2 3 4 5 6 7 8] txt_out [9 9 9 10 10 10]
|
| 126 |
+
2. reshape & mean for each sample to coalesce the repeated txt.
|
| 127 |
+
"""
|
| 128 |
+
vid_out, txt_out = all[src_idx].split([len(vid_idx), txt_idx_len])
|
| 129 |
+
txt_out_coalesced = []
|
| 130 |
+
for txt, repeat_time in zip(txt_out.split(repeat_txt_len), txt_repeat_list):
|
| 131 |
+
txt = txt.reshape(-1, repeat_time, *txt.shape[1:]).mean(1)
|
| 132 |
+
txt_out_coalesced.append(txt)
|
| 133 |
+
return vid_out, torch.cat(txt_out_coalesced)
|
| 134 |
+
|
| 135 |
+
# Note: Backward of torch.index_select is non-deterministic when existing repeated index,
|
| 136 |
+
# the difference may cumulative like torch.repeat_interleave, so we use vanilla index here.
|
| 137 |
+
return (
|
| 138 |
+
lambda vid, txt: torch.cat([vid, txt])[tgt_idx],
|
| 139 |
+
lambda all: unconcat_coalesce(all),
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def rearrange(
|
| 144 |
+
hid: torch.FloatTensor, # (L c)
|
| 145 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 146 |
+
pattern: str,
|
| 147 |
+
**kwargs: Dict[str, int],
|
| 148 |
+
) -> Tuple[
|
| 149 |
+
torch.FloatTensor,
|
| 150 |
+
torch.LongTensor,
|
| 151 |
+
]:
|
| 152 |
+
return flatten([einops.rearrange(h, pattern, **kwargs) for h in unflatten(hid, hid_shape)])
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def rearrange_idx(
|
| 156 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 157 |
+
pattern: str,
|
| 158 |
+
**kwargs: Dict[str, int],
|
| 159 |
+
) -> Tuple[Callable, Callable, torch.LongTensor]:
|
| 160 |
+
hid_idx = torch.arange(hid_shape.prod(-1).sum(), device=hid_shape.device).unsqueeze(-1)
|
| 161 |
+
tgt_idx, tgt_shape = rearrange(hid_idx, hid_shape, pattern, **kwargs)
|
| 162 |
+
tgt_idx = tgt_idx.squeeze(-1)
|
| 163 |
+
src_idx = torch.argsort(tgt_idx)
|
| 164 |
+
return (
|
| 165 |
+
lambda hid: torch.index_select(hid, 0, tgt_idx),
|
| 166 |
+
lambda hid: torch.index_select(hid, 0, src_idx),
|
| 167 |
+
tgt_shape,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def repeat(
|
| 172 |
+
hid: torch.FloatTensor, # (L c)
|
| 173 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 174 |
+
pattern: str,
|
| 175 |
+
**kwargs: Dict[str, torch.LongTensor], # (b)
|
| 176 |
+
) -> Tuple[
|
| 177 |
+
torch.FloatTensor,
|
| 178 |
+
torch.LongTensor,
|
| 179 |
+
]:
|
| 180 |
+
hid = unflatten(hid, hid_shape)
|
| 181 |
+
kwargs = [{k: v[i].item() for k, v in kwargs.items()} for i in range(len(hid))]
|
| 182 |
+
return flatten([einops.repeat(h, pattern, **a) for h, a in zip(hid, kwargs)])
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def pack(
|
| 186 |
+
samples: List[torch.Tensor], # List of (h w c).
|
| 187 |
+
) -> Tuple[
|
| 188 |
+
List[torch.Tensor], # groups [(b1 h1 w1 c1), (b2 h2 w2 c2)]
|
| 189 |
+
List[List[int]], # reversal indices.
|
| 190 |
+
]:
|
| 191 |
+
batches = {}
|
| 192 |
+
indices = {}
|
| 193 |
+
for i, sample in enumerate(samples):
|
| 194 |
+
shape = sample.shape
|
| 195 |
+
batches[shape] = batches.get(shape, [])
|
| 196 |
+
indices[shape] = indices.get(shape, [])
|
| 197 |
+
batches[shape].append(sample)
|
| 198 |
+
indices[shape].append(i)
|
| 199 |
+
|
| 200 |
+
batches = list(map(torch.stack, batches.values()))
|
| 201 |
+
indices = list(indices.values())
|
| 202 |
+
return batches, indices
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def unpack(
|
| 206 |
+
batches: List[torch.Tensor],
|
| 207 |
+
indices: List[List[int]],
|
| 208 |
+
) -> List[torch.Tensor]:
|
| 209 |
+
samples = [None] * (max(chain(*indices)) + 1)
|
| 210 |
+
for batch, index in zip(batches, indices):
|
| 211 |
+
for sample, i in zip(batch.unbind(), index):
|
| 212 |
+
samples[i] = sample
|
| 213 |
+
return samples
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def window(
|
| 217 |
+
hid: torch.FloatTensor, # (L c)
|
| 218 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 219 |
+
window_fn: Callable[[torch.Tensor], List[torch.Tensor]],
|
| 220 |
+
):
|
| 221 |
+
hid = unflatten(hid, hid_shape)
|
| 222 |
+
hid = list(map(window_fn, hid))
|
| 223 |
+
hid_windows = torch.tensor(list(map(len, hid)), device=hid_shape.device)
|
| 224 |
+
hid, hid_shape = flatten(list(chain(*hid)))
|
| 225 |
+
return hid, hid_shape, hid_windows
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def window_idx(
|
| 229 |
+
hid_shape: torch.LongTensor, # (b n)
|
| 230 |
+
window_fn: Callable[[torch.Tensor], List[torch.Tensor]],
|
| 231 |
+
):
|
| 232 |
+
hid_idx = torch.arange(hid_shape.prod(-1).sum(), device=hid_shape.device).unsqueeze(-1)
|
| 233 |
+
tgt_idx, tgt_shape, tgt_windows = window(hid_idx, hid_shape, window_fn)
|
| 234 |
+
tgt_idx = tgt_idx.squeeze(-1)
|
| 235 |
+
src_idx = torch.argsort(tgt_idx)
|
| 236 |
+
return (
|
| 237 |
+
lambda hid: torch.index_select(hid, 0, tgt_idx),
|
| 238 |
+
lambda hid: torch.index_select(hid, 0, src_idx),
|
| 239 |
+
tgt_shape,
|
| 240 |
+
tgt_windows,
|
| 241 |
+
)
|