Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
st.set_page_config(page_title="WhatsApp Chat Analyzer", layout="wide")
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import seaborn as sns
|
| 7 |
+
import preprocessor, helper
|
| 8 |
+
from sentiment import predict_sentiment_batch
|
| 9 |
+
import os
|
| 10 |
+
os.environ["STREAMLIT_SERVER_RUN_ON_SAVE"] = "false"
|
| 11 |
+
|
| 12 |
+
# Theme customization
|
| 13 |
+
st.markdown(
|
| 14 |
+
"""
|
| 15 |
+
<style>
|
| 16 |
+
.main {background-color: #f0f2f6;}
|
| 17 |
+
</style>
|
| 18 |
+
""",
|
| 19 |
+
unsafe_allow_html=True
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Set seaborn style
|
| 23 |
+
sns.set_theme(style="whitegrid")
|
| 24 |
+
|
| 25 |
+
st.title("π WhatsApp Chat Sentiment Analysis Dashboard")
|
| 26 |
+
st.subheader('Instructions')
|
| 27 |
+
st.markdown("1. Open the sidebar and upload your WhatsApp chat file in .txt format.")
|
| 28 |
+
st.markdown("2. Wait for the initial processing (minimal delay).")
|
| 29 |
+
st.markdown("3. Customize the analysis by selecting users or filters.")
|
| 30 |
+
st.markdown("4. Click 'Show Analysis' for detailed results.")
|
| 31 |
+
|
| 32 |
+
st.sidebar.title("Whatsapp Chat Analyzer")
|
| 33 |
+
uploaded_file = st.sidebar.file_uploader("Upload your chat file (.txt)", type="txt")
|
| 34 |
+
|
| 35 |
+
@st.cache_data
|
| 36 |
+
def load_and_preprocess(file_content):
|
| 37 |
+
return preprocessor.preprocess(file_content)
|
| 38 |
+
|
| 39 |
+
if uploaded_file is not None:
|
| 40 |
+
raw_data = uploaded_file.read().decode("utf-8")
|
| 41 |
+
with st.spinner("Loading chat data..."):
|
| 42 |
+
df, _ = load_and_preprocess(raw_data)
|
| 43 |
+
st.session_state.df = df
|
| 44 |
+
|
| 45 |
+
st.sidebar.header("π Filters")
|
| 46 |
+
user_list = ["Overall"] + sorted(df["user"].unique().tolist())
|
| 47 |
+
selected_user = st.sidebar.selectbox("Select User", user_list)
|
| 48 |
+
|
| 49 |
+
df_filtered = df if selected_user == "Overall" else df[df["user"] == selected_user]
|
| 50 |
+
|
| 51 |
+
if st.sidebar.button("Show Analysis"):
|
| 52 |
+
if df_filtered.empty:
|
| 53 |
+
st.warning(f"No data found for user: {selected_user}")
|
| 54 |
+
else:
|
| 55 |
+
with st.spinner("Analyzing..."):
|
| 56 |
+
if 'sentiment' not in df_filtered.columns:
|
| 57 |
+
try:
|
| 58 |
+
print("Starting sentiment analysis...")
|
| 59 |
+
# Get messages as clean strings
|
| 60 |
+
message_list = df_filtered["message"].astype(str).tolist()
|
| 61 |
+
message_list = [msg for msg in message_list if msg.strip()]
|
| 62 |
+
|
| 63 |
+
print(f"Processing {len(message_list)} messages")
|
| 64 |
+
print(f"Sample messages: {message_list[:5]}")
|
| 65 |
+
|
| 66 |
+
# Directly call the sentiment analysis function
|
| 67 |
+
df_filtered['sentiment'] = predict_sentiment_batch(message_list)
|
| 68 |
+
print("Sentiment analysis completed successfully")
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
st.error(f"Sentiment analysis failed: {str(e)}")
|
| 72 |
+
print(f"Full error: {str(e)}")
|
| 73 |
+
|
| 74 |
+
st.session_state.df_filtered = df_filtered
|
| 75 |
+
else:
|
| 76 |
+
st.session_state.df_filtered = df_filtered
|
| 77 |
+
|
| 78 |
+
# Display statistics and visualizations
|
| 79 |
+
num_messages, words, num_media, num_links = helper.fetch_stats(selected_user, df_filtered)
|
| 80 |
+
st.title("Top Statistics")
|
| 81 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 82 |
+
with col1:
|
| 83 |
+
st.header("Total Messages")
|
| 84 |
+
st.title(num_messages)
|
| 85 |
+
with col2:
|
| 86 |
+
st.header("Total Words")
|
| 87 |
+
st.title(words)
|
| 88 |
+
with col3:
|
| 89 |
+
st.header("Media Shared")
|
| 90 |
+
st.title(num_media)
|
| 91 |
+
with col4:
|
| 92 |
+
st.header("Links Shared")
|
| 93 |
+
st.title(num_links)
|
| 94 |
+
|
| 95 |
+
st.title("Monthly Timeline")
|
| 96 |
+
timeline = helper.monthly_timeline(selected_user, df_filtered.sample(min(5000, len(df_filtered))))
|
| 97 |
+
if not timeline.empty:
|
| 98 |
+
plt.figure(figsize=(10, 5))
|
| 99 |
+
sns.lineplot(data=timeline, x='time', y='message', color='green')
|
| 100 |
+
plt.title("Monthly Timeline")
|
| 101 |
+
plt.xlabel("Date")
|
| 102 |
+
plt.ylabel("Messages")
|
| 103 |
+
st.pyplot(plt)
|
| 104 |
+
plt.clf()
|
| 105 |
+
|
| 106 |
+
st.title("Daily Timeline")
|
| 107 |
+
daily_timeline = helper.daily_timeline(selected_user, df_filtered.sample(min(5000, len(df_filtered))))
|
| 108 |
+
if not daily_timeline.empty:
|
| 109 |
+
plt.figure(figsize=(10, 5))
|
| 110 |
+
sns.lineplot(data=daily_timeline, x='date', y='message', color='black')
|
| 111 |
+
plt.title("Daily Timeline")
|
| 112 |
+
plt.xlabel("Date")
|
| 113 |
+
plt.ylabel("Messages")
|
| 114 |
+
st.pyplot(plt)
|
| 115 |
+
plt.clf()
|
| 116 |
+
|
| 117 |
+
st.title("Activity Map")
|
| 118 |
+
col1, col2 = st.columns(2)
|
| 119 |
+
with col1:
|
| 120 |
+
st.header("Most Busy Day")
|
| 121 |
+
busy_day = helper.week_activity_map(selected_user, df_filtered)
|
| 122 |
+
if not busy_day.empty:
|
| 123 |
+
plt.figure(figsize=(10, 5))
|
| 124 |
+
sns.barplot(x=busy_day.index, y=busy_day.values, palette="Purples_r")
|
| 125 |
+
plt.title("Most Busy Day")
|
| 126 |
+
plt.xlabel("Day of Week")
|
| 127 |
+
plt.ylabel("Message Count")
|
| 128 |
+
st.pyplot(plt)
|
| 129 |
+
plt.clf()
|
| 130 |
+
with col2:
|
| 131 |
+
st.header("Most Busy Month")
|
| 132 |
+
busy_month = helper.month_activity_map(selected_user, df_filtered)
|
| 133 |
+
if not busy_month.empty:
|
| 134 |
+
plt.figure(figsize=(10, 5))
|
| 135 |
+
sns.barplot(x=busy_month.index, y=busy_month.values, palette="Oranges_r")
|
| 136 |
+
plt.title("Most Busy Month")
|
| 137 |
+
plt.xlabel("Month")
|
| 138 |
+
plt.ylabel("Message Count")
|
| 139 |
+
st.pyplot(plt)
|
| 140 |
+
plt.clf()
|
| 141 |
+
|
| 142 |
+
if selected_user == 'Overall':
|
| 143 |
+
st.title("Most Busy Users")
|
| 144 |
+
x, new_df = helper.most_busy_users(df_filtered)
|
| 145 |
+
if not x.empty:
|
| 146 |
+
plt.figure(figsize=(10, 5))
|
| 147 |
+
sns.barplot(x=x.index, y=x.values, palette="Reds_r")
|
| 148 |
+
plt.title("Most Busy Users")
|
| 149 |
+
plt.xlabel("User")
|
| 150 |
+
plt.ylabel("Message Count")
|
| 151 |
+
plt.xticks(rotation=45)
|
| 152 |
+
st.pyplot(plt)
|
| 153 |
+
st.title("Word Count by User")
|
| 154 |
+
plt.clf()
|
| 155 |
+
st.dataframe(new_df)
|
| 156 |
+
|
| 157 |
+
# Most common words analysis
|
| 158 |
+
st.title("Most Common Words")
|
| 159 |
+
most_common_df = helper.most_common_words(selected_user, df_filtered)
|
| 160 |
+
if not most_common_df.empty:
|
| 161 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 162 |
+
sns.barplot(y=most_common_df[0], x=most_common_df[1], ax=ax, palette="Blues_r")
|
| 163 |
+
ax.set_title("Top 20 Most Common Words")
|
| 164 |
+
ax.set_xlabel("Frequency")
|
| 165 |
+
ax.set_ylabel("Words")
|
| 166 |
+
plt.xticks(rotation='vertical')
|
| 167 |
+
st.pyplot(fig)
|
| 168 |
+
plt.clf()
|
| 169 |
+
else:
|
| 170 |
+
st.warning("No data available for most common words.")
|
| 171 |
+
|
| 172 |
+
# Emoji analysis
|
| 173 |
+
st.title("Emoji Analysis")
|
| 174 |
+
emoji_df = helper.emoji_helper(selected_user, df_filtered)
|
| 175 |
+
if not emoji_df.empty:
|
| 176 |
+
col1, col2 = st.columns(2)
|
| 177 |
+
|
| 178 |
+
with col1:
|
| 179 |
+
st.subheader("Top Emojis Used")
|
| 180 |
+
st.dataframe(emoji_df)
|
| 181 |
+
|
| 182 |
+
with col2:
|
| 183 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
| 184 |
+
ax.pie(emoji_df[1].head(), labels=emoji_df[0].head(),
|
| 185 |
+
autopct="%0.2f%%", startangle=90,
|
| 186 |
+
colors=sns.color_palette("pastel"))
|
| 187 |
+
ax.set_title("Top Emoji Distribution")
|
| 188 |
+
st.pyplot(fig)
|
| 189 |
+
plt.clf()
|
| 190 |
+
else:
|
| 191 |
+
st.warning("No data available for emoji analysis.")
|
| 192 |
+
|
| 193 |
+
# Sentiment Analysis Visualizations
|
| 194 |
+
st.title("π Sentiment Analysis")
|
| 195 |
+
|
| 196 |
+
# Convert month names to abbreviated format
|
| 197 |
+
month_map = {
|
| 198 |
+
'January': 'Jan', 'February': 'Feb', 'March': 'Mar', 'April': 'Apr',
|
| 199 |
+
'May': 'May', 'June': 'Jun', 'July': 'Jul', 'August': 'Aug',
|
| 200 |
+
'September': 'Sep', 'October': 'Oct', 'November': 'Nov', 'December': 'Dec'
|
| 201 |
+
}
|
| 202 |
+
df_filtered['month'] = df_filtered['month'].map(month_map)
|
| 203 |
+
|
| 204 |
+
# Group by month and sentiment
|
| 205 |
+
monthly_sentiment = df_filtered.groupby(['month', 'sentiment']).size().unstack(fill_value=0)
|
| 206 |
+
|
| 207 |
+
# Plotting: Histogram (Bar Chart) for each sentiment
|
| 208 |
+
st.write("### Sentiment Count by Month (Histogram)")
|
| 209 |
+
|
| 210 |
+
# Create a figure with subplots for each sentiment
|
| 211 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
|
| 212 |
+
|
| 213 |
+
# Plot Positive Sentiment
|
| 214 |
+
if 'positive' in monthly_sentiment:
|
| 215 |
+
axes[0].bar(monthly_sentiment.index, monthly_sentiment['positive'], color='green')
|
| 216 |
+
axes[0].set_title('Positive Sentiment')
|
| 217 |
+
axes[0].set_xlabel('Month')
|
| 218 |
+
axes[0].set_ylabel('Count')
|
| 219 |
+
|
| 220 |
+
# Plot Neutral Sentiment
|
| 221 |
+
if 'neutral' in monthly_sentiment:
|
| 222 |
+
axes[1].bar(monthly_sentiment.index, monthly_sentiment['neutral'], color='blue')
|
| 223 |
+
axes[1].set_title('Neutral Sentiment')
|
| 224 |
+
axes[1].set_xlabel('Month')
|
| 225 |
+
axes[1].set_ylabel('Count')
|
| 226 |
+
|
| 227 |
+
# Plot Negative Sentiment
|
| 228 |
+
if 'negative' in monthly_sentiment:
|
| 229 |
+
axes[2].bar(monthly_sentiment.index, monthly_sentiment['negative'], color='red')
|
| 230 |
+
axes[2].set_title('Negative Sentiment')
|
| 231 |
+
axes[2].set_xlabel('Month')
|
| 232 |
+
axes[2].set_ylabel('Count')
|
| 233 |
+
|
| 234 |
+
# Display the plots in Streamlit
|
| 235 |
+
st.pyplot(fig)
|
| 236 |
+
plt.clf()
|
| 237 |
+
|
| 238 |
+
# Count sentiments per day of the week
|
| 239 |
+
sentiment_counts = df_filtered.groupby(['day_of_week', 'sentiment']).size().unstack(fill_value=0)
|
| 240 |
+
|
| 241 |
+
# Sort days correctly
|
| 242 |
+
day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
|
| 243 |
+
sentiment_counts = sentiment_counts.reindex(day_order)
|
| 244 |
+
|
| 245 |
+
# Daily Sentiment Analysis
|
| 246 |
+
st.write("### Daily Sentiment Analysis")
|
| 247 |
+
|
| 248 |
+
# Create a Matplotlib figure
|
| 249 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 250 |
+
sentiment_counts.plot(kind='bar', stacked=False, ax=ax, color=['red', 'blue', 'green'])
|
| 251 |
+
|
| 252 |
+
# Customize the plot
|
| 253 |
+
ax.set_xlabel("Day of the Week")
|
| 254 |
+
ax.set_ylabel("Count")
|
| 255 |
+
ax.set_title("Sentiment Distribution per Day of the Week")
|
| 256 |
+
ax.legend(title="Sentiment")
|
| 257 |
+
|
| 258 |
+
# Display the plot in Streamlit
|
| 259 |
+
st.pyplot(fig)
|
| 260 |
+
plt.clf()
|
| 261 |
+
|
| 262 |
+
# Count messages per user per sentiment (only for Overall view)
|
| 263 |
+
if selected_user == 'Overall':
|
| 264 |
+
sentiment_counts = df_filtered.groupby(['user', 'sentiment']).size().reset_index(name='Count')
|
| 265 |
+
|
| 266 |
+
# Calculate total messages per sentiment
|
| 267 |
+
total_per_sentiment = df_filtered['sentiment'].value_counts().to_dict()
|
| 268 |
+
|
| 269 |
+
# Add percentage column
|
| 270 |
+
sentiment_counts['Percentage'] = sentiment_counts.apply(
|
| 271 |
+
lambda row: (row['Count'] / total_per_sentiment[row['sentiment']]) * 100, axis=1
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Separate tables for each sentiment
|
| 275 |
+
positive_df = sentiment_counts[sentiment_counts['sentiment'] == 'positive'].sort_values(by='Count', ascending=False).head(10)
|
| 276 |
+
neutral_df = sentiment_counts[sentiment_counts['sentiment'] == 'neutral'].sort_values(by='Count', ascending=False).head(10)
|
| 277 |
+
negative_df = sentiment_counts[sentiment_counts['sentiment'] == 'negative'].sort_values(by='Count', ascending=False).head(10)
|
| 278 |
+
|
| 279 |
+
# Sentiment Contribution Analysis
|
| 280 |
+
st.write("### Sentiment Contribution by User")
|
| 281 |
+
|
| 282 |
+
# Create three columns for side-by-side display
|
| 283 |
+
col1, col2, col3 = st.columns(3)
|
| 284 |
+
|
| 285 |
+
# Display Positive Table
|
| 286 |
+
with col1:
|
| 287 |
+
st.subheader("Top Positive Contributors")
|
| 288 |
+
if not positive_df.empty:
|
| 289 |
+
st.dataframe(positive_df[['user', 'Count', 'Percentage']])
|
| 290 |
+
else:
|
| 291 |
+
st.warning("No positive sentiment data")
|
| 292 |
+
|
| 293 |
+
# Display Neutral Table
|
| 294 |
+
with col2:
|
| 295 |
+
st.subheader("Top Neutral Contributors")
|
| 296 |
+
if not neutral_df.empty:
|
| 297 |
+
st.dataframe(neutral_df[['user', 'Count', 'Percentage']])
|
| 298 |
+
else:
|
| 299 |
+
st.warning("No neutral sentiment data")
|
| 300 |
+
|
| 301 |
+
# Display Negative Table
|
| 302 |
+
with col3:
|
| 303 |
+
st.subheader("Top Negative Contributors")
|
| 304 |
+
if not negative_df.empty:
|
| 305 |
+
st.dataframe(negative_df[['user', 'Count', 'Percentage']])
|
| 306 |
+
else:
|
| 307 |
+
st.warning("No negative sentiment data")
|
| 308 |
+
|
| 309 |
+
# Topic Analysis Section
|
| 310 |
+
st.title("π Area of Focus: Topic Analysis")
|
| 311 |
+
|
| 312 |
+
# Check if topic column exists, otherwise perform topic modeling
|
| 313 |
+
# if 'topic' not in df_filtered.columns:
|
| 314 |
+
# with st.spinner("Performing topic modeling..."):
|
| 315 |
+
# try:
|
| 316 |
+
# # Add topic modeling here or ensure your helper functions handle it
|
| 317 |
+
# df_filtered = helper.perform_topic_modeling(df_filtered)
|
| 318 |
+
# except Exception as e:
|
| 319 |
+
# st.error(f"Topic modeling failed: {str(e)}")
|
| 320 |
+
# st.stop()
|
| 321 |
+
|
| 322 |
+
# Plot Topic Distribution
|
| 323 |
+
st.header("Topic Distribution")
|
| 324 |
+
try:
|
| 325 |
+
fig = helper.plot_topic_distribution(df_filtered)
|
| 326 |
+
st.pyplot(fig)
|
| 327 |
+
plt.clf()
|
| 328 |
+
except Exception as e:
|
| 329 |
+
st.warning(f"Could not display topic distribution: {str(e)}")
|
| 330 |
+
|
| 331 |
+
# Display Sample Messages for Each Topic
|
| 332 |
+
st.header("Sample Messages for Each Topic")
|
| 333 |
+
if 'topic' in df_filtered.columns:
|
| 334 |
+
for topic_id in sorted(df_filtered['topic'].unique()):
|
| 335 |
+
st.subheader(f"Topic {topic_id}")
|
| 336 |
+
|
| 337 |
+
# Get messages for the current topic
|
| 338 |
+
filtered_messages = df_filtered[df_filtered['topic'] == topic_id]['message']
|
| 339 |
+
|
| 340 |
+
# Determine sample size
|
| 341 |
+
sample_size = min(5, len(filtered_messages))
|
| 342 |
+
|
| 343 |
+
if sample_size > 0:
|
| 344 |
+
sample_messages = filtered_messages.sample(sample_size, replace=False).tolist()
|
| 345 |
+
for msg in sample_messages:
|
| 346 |
+
st.write(f"- {msg}")
|
| 347 |
+
else:
|
| 348 |
+
st.write("No messages available for this topic.")
|
| 349 |
+
else:
|
| 350 |
+
st.warning("Topic information not available")
|
| 351 |
+
|
| 352 |
+
# Topic Distribution Over Time
|
| 353 |
+
st.header("π
Topic Trends Over Time")
|
| 354 |
+
|
| 355 |
+
# Add time frequency selector
|
| 356 |
+
time_freq = st.selectbox("Select Time Frequency", ["Daily", "Weekly", "Monthly"], key='time_freq')
|
| 357 |
+
|
| 358 |
+
# Plot topic trends
|
| 359 |
+
try:
|
| 360 |
+
freq_map = {"Daily": "D", "Weekly": "W", "Monthly": "M"}
|
| 361 |
+
topic_distribution = helper.topic_distribution_over_time(df_filtered, time_freq=freq_map[time_freq])
|
| 362 |
+
|
| 363 |
+
# Choose between static and interactive plot
|
| 364 |
+
use_plotly = st.checkbox("Use interactive visualization", value=True, key='use_plotly')
|
| 365 |
+
|
| 366 |
+
if use_plotly:
|
| 367 |
+
fig = helper.plot_topic_distribution_over_time_plotly(topic_distribution)
|
| 368 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 369 |
+
else:
|
| 370 |
+
fig = helper.plot_topic_distribution_over_time(topic_distribution)
|
| 371 |
+
st.pyplot(fig)
|
| 372 |
+
plt.clf()
|
| 373 |
+
except Exception as e:
|
| 374 |
+
st.warning(f"Could not display topic trends: {str(e)}")
|
| 375 |
+
|
| 376 |
+
# Clustering Analysis Section
|
| 377 |
+
st.title("π§© Conversation Clusters")
|
| 378 |
+
|
| 379 |
+
# Number of clusters input
|
| 380 |
+
n_clusters = st.slider("Select number of clusters",
|
| 381 |
+
min_value=2,
|
| 382 |
+
max_value=10,
|
| 383 |
+
value=5,
|
| 384 |
+
key='n_clusters')
|
| 385 |
+
|
| 386 |
+
# Perform clustering
|
| 387 |
+
with st.spinner("Analyzing conversation clusters..."):
|
| 388 |
+
try:
|
| 389 |
+
df_clustered, reduced_features, _ = preprocessor.preprocess_for_clustering(df_filtered, n_clusters=n_clusters)
|
| 390 |
+
|
| 391 |
+
# Plot clusters
|
| 392 |
+
st.header("Cluster Visualization")
|
| 393 |
+
fig = helper.plot_clusters(reduced_features, df_clustered['cluster'])
|
| 394 |
+
st.pyplot(fig)
|
| 395 |
+
plt.clf()
|
| 396 |
+
|
| 397 |
+
# Cluster Insights
|
| 398 |
+
st.header("π Cluster Insights")
|
| 399 |
+
|
| 400 |
+
# 1. Dominant Conversation Themes
|
| 401 |
+
st.subheader("1. Dominant Themes")
|
| 402 |
+
cluster_labels = helper.get_cluster_labels(df_clustered, n_clusters)
|
| 403 |
+
for cluster_id, label in cluster_labels.items():
|
| 404 |
+
st.write(f"**Cluster {cluster_id}**: {label}")
|
| 405 |
+
|
| 406 |
+
# 2. Temporal Patterns
|
| 407 |
+
st.subheader("2. Temporal Patterns")
|
| 408 |
+
temporal_trends = helper.get_temporal_trends(df_clustered)
|
| 409 |
+
for cluster_id, trend in temporal_trends.items():
|
| 410 |
+
st.write(f"**Cluster {cluster_id}**: Peaks on {trend['peak_day']} around {trend['peak_time']}")
|
| 411 |
+
|
| 412 |
+
# 3. User Contributions
|
| 413 |
+
if selected_user == 'Overall':
|
| 414 |
+
st.subheader("3. Top Contributors")
|
| 415 |
+
user_contributions = helper.get_user_contributions(df_clustered)
|
| 416 |
+
for cluster_id, users in user_contributions.items():
|
| 417 |
+
st.write(f"**Cluster {cluster_id}**: {', '.join(users[:3])}...")
|
| 418 |
+
|
| 419 |
+
# 4. Sentiment by Cluster
|
| 420 |
+
st.subheader("4. Sentiment Analysis")
|
| 421 |
+
sentiment_by_cluster = helper.get_sentiment_by_cluster(df_clustered)
|
| 422 |
+
for cluster_id, sentiment in sentiment_by_cluster.items():
|
| 423 |
+
st.write(f"**Cluster {cluster_id}**: {sentiment['positive']}% positive, {sentiment['neutral']}% neutral, {sentiment['negative']}% negative")
|
| 424 |
+
|
| 425 |
+
# Sample messages from each cluster
|
| 426 |
+
st.subheader("Sample Messages")
|
| 427 |
+
for cluster_id in sorted(df_clustered['cluster'].unique()):
|
| 428 |
+
with st.expander(f"Cluster {cluster_id} Messages"):
|
| 429 |
+
cluster_msgs = df_clustered[df_clustered['cluster'] == cluster_id]['message']
|
| 430 |
+
sample_size = min(3, len(cluster_msgs))
|
| 431 |
+
if sample_size > 0:
|
| 432 |
+
for msg in cluster_msgs.sample(sample_size, replace=False):
|
| 433 |
+
st.write(f"- {msg}")
|
| 434 |
+
else:
|
| 435 |
+
st.write("No messages available")
|
| 436 |
+
|
| 437 |
+
except Exception as e:
|
| 438 |
+
st.error(f"Clustering failed: {str(e)}")
|