Spaces:
Running
Running
File size: 28,408 Bytes
7c691e6 56a86ce c03c7bc 56a86ce c03c7bc 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 201da5d 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 c03c7bc 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 7c691e6 56a86ce 0ca771d 56a86ce c03c7bc 56a86ce c03c7bc 56a86ce 1baa168 7c691e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import json
from pathlib import Path
import sqlite3
import pickle
from functools import lru_cache
import threading
import pandas as pd
import ast
from scipy import stats
import yaml
import numpy as np
# Define column schemas
PARSED_RESULTS_COLUMNS = {
'benchmark_name': 'TEXT',
'agent_name': 'TEXT',
'date': 'TEXT',
'run_id': 'TEXT',
'successful_tasks': 'TEXT',
'failed_tasks': 'TEXT',
'total_cost': 'REAL',
'accuracy': 'REAL',
'precision': 'REAL',
'recall': 'REAL',
'f1_score': 'REAL',
'auc': 'REAL',
'overall_score': 'REAL',
'vectorization_score': 'REAL',
'fathomnet_score': 'REAL',
'feedback_score': 'REAL',
'house_price_score': 'REAL',
'spaceship_titanic_score': 'REAL',
'amp_parkinsons_disease_progression_prediction_score': 'REAL',
'cifar10_score': 'REAL',
'imdb_score': 'REAL',
'level_1_accuracy': 'REAL',
'level_2_accuracy': 'REAL',
'level_3_accuracy': 'REAL',
'task_goal_completion': 'REAL', # New column
'scenario_goal_completion': 'REAL', # New column
'accuracy_ci': 'TEXT', # Using TEXT since it stores formatted strings like "-0.123/+0.456"
'cost_ci': 'TEXT',
}
# Define which columns should be included in aggregation and how
AGGREGATION_RULES = {
'date': 'first',
'total_cost': 'mean',
'accuracy': 'mean',
'precision': 'mean',
'recall': 'mean',
'f1_score': 'mean',
'auc': 'mean',
'overall_score': 'mean',
'vectorization_score': 'mean',
'fathomnet_score': 'mean',
'feedback_score': 'mean',
'house_price_score': 'mean',
'spaceship_titanic_score': 'mean',
'amp_parkinsons_disease_progression_prediction_score': 'mean',
'cifar10_score': 'mean',
'imdb_score': 'mean',
'level_1_accuracy': 'mean',
'level_2_accuracy': 'mean',
'level_3_accuracy': 'mean',
'task_goal_completion': 'mean',
'scenario_goal_completion': 'mean',
'Verified': 'first',
'Runs': 'first',
'Traces': 'first',
'accuracy_ci': 'first',
'cost_ci': 'first',
}
# Define column display names
COLUMN_DISPLAY_NAMES = {
'agent_name': 'Agent Name',
'date': 'Date',
'total_cost': 'Total Cost',
'accuracy': 'Accuracy',
'precision': 'Precision',
'recall': 'Recall',
'f1_score': 'F1 Score',
'auc': 'AUC',
'overall_score': 'Overall Score',
'vectorization_score': 'Vectorization Score',
'fathomnet_score': 'Fathomnet Score',
'feedback_score': 'Feedback Score',
'house_price_score': 'House Price Score',
'spaceship_titanic_score': 'Spaceship Titanic Score',
'amp_parkinsons_disease_progression_prediction_score': 'AMP Parkinsons Disease Progression Prediction Score',
'cifar10_score': 'CIFAR10 Score',
'imdb_score': 'IMDB Score',
'level_1_accuracy': 'Level 1 Accuracy',
'level_2_accuracy': 'Level 2 Accuracy',
'level_3_accuracy': 'Level 3 Accuracy',
'task_goal_completion': 'Task Goal Completion',
'scenario_goal_completion': 'Scenario Goal Completion',
'accuracy_ci': 'Accuracy CI',
'cost_ci': 'Total Cost CI',
}
DEFAULT_PRICING = {
"text-embedding-3-small": {"prompt_tokens": 0.02, "completion_tokens": 0},
"text-embedding-3-large": {"prompt_tokens": 0.13, "completion_tokens": 0},
"gpt-4o-2024-05-13": {"prompt_tokens": 2.5, "completion_tokens": 10},
"gpt-4o-2024-08-06": {"prompt_tokens": 2.5, "completion_tokens": 10},
"gpt-3.5-turbo-0125": {"prompt_tokens": 0.5, "completion_tokens": 1.5},
"gpt-3.5-turbo": {"prompt_tokens": 0.5, "completion_tokens": 1.5},
"gpt-4-turbo-2024-04-09": {"prompt_tokens": 10, "completion_tokens": 30},
"gpt-4-turbo": {"prompt_tokens": 10, "completion_tokens": 30},
"gpt-4o-mini-2024-07-18": {"prompt_tokens": 0.15, "completion_tokens": 0.6},
"meta-llama/Meta-Llama-3.1-8B-Instruct": {"prompt_tokens": 0.18, "completion_tokens": 0.18},
"meta-llama/Meta-Llama-3.1-70B-Instruct": {"prompt_tokens": 0.88, "completion_tokens": 0.88},
"meta-llama/Meta-Llama-3.1-405B-Instruct": {"prompt_tokens": 5, "completion_tokens": 15},
"gpt-4o": {"prompt_tokens": 2.5, "completion_tokens": 10},
"o1-mini-2024-09-12": {"prompt_tokens": 3, "completion_tokens": 12},
"o1-preview-2024-09-12": {"prompt_tokens": 15, "completion_tokens": 60},
"claude-3-5-sonnet-20240620": {"prompt_tokens": 3, "completion_tokens": 15},
"claude-3-5-sonnet-20241022": {"prompt_tokens": 3, "completion_tokens": 15},
"us.anthropic.claude-3-5-sonnet-20240620-v1:0": {"prompt_tokens": 3, "completion_tokens": 15},
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {"prompt_tokens": 3, "completion_tokens": 15},
"openai/gpt-4o-2024-11-20": {"prompt_tokens": 2.5, "completion_tokens": 10},
"openai/gpt-4o-2024-08-06": {"prompt_tokens": 2.5, "completion_tokens": 10},
"openai/gpt-4o-mini-2024-07-18": {"prompt_tokens": 0.15, "completion_tokens": 0.6},
"openai/o1-mini-2024-09-12": {"prompt_tokens": 3, "completion_tokens": 12},
"openai/o1-preview-2024-09-12": {"prompt_tokens": 15, "completion_tokens": 60},
"anthropic/claude-3-5-sonnet-20240620": {"prompt_tokens": 3, "completion_tokens": 15},
"anthropic/claude-3-5-sonnet-20241022": {"prompt_tokens": 3, "completion_tokens": 15},
"google/gemini-1.5-pro": {"prompt_tokens": 1.25, "completion_tokens": 5},
"google/gemini-1.5-flash": {"prompt_tokens": 0.075, "completion_tokens": 0.3},
"together/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {"prompt_tokens": 3.5, "completion_tokens": 3.5},
"together/meta-llama/Meta-Llama-3.1-70B-Instruct": {"prompt_tokens": 0.88, "completion_tokens": 0.88},
}
class TracePreprocessor:
def __init__(self, db_dir='preprocessed_traces'):
self.db_dir = Path(db_dir)
self.db_dir.mkdir(exist_ok=True)
self.local = threading.local()
self.connections = {}
def get_conn(self, benchmark_name):
# Sanitize benchmark name for filename
safe_name = benchmark_name.replace('/', '_').replace('\\', '_')
db_path = self.db_dir / f"{safe_name}.db"
# Get thread-specific connections dictionary
if not hasattr(self.local, 'connections'):
self.local.connections = {}
# Create new connection if not exists for this benchmark
if safe_name not in self.local.connections:
self.local.connections[safe_name] = sqlite3.connect(db_path)
return self.local.connections[safe_name]
def create_tables(self, benchmark_name):
with self.get_conn(benchmark_name) as conn:
# Create parsed_results table dynamically from schema
columns = [f"{col} {dtype}" for col, dtype in PARSED_RESULTS_COLUMNS.items()]
create_parsed_results = f'''
CREATE TABLE IF NOT EXISTS parsed_results (
{', '.join(columns)},
PRIMARY KEY (benchmark_name, agent_name, run_id)
)
'''
conn.execute(create_parsed_results)
conn.execute('''
CREATE TABLE IF NOT EXISTS preprocessed_traces (
benchmark_name TEXT,
agent_name TEXT,
date TEXT,
run_id TEXT,
raw_logging_results BLOB,
PRIMARY KEY (benchmark_name, agent_name, run_id)
)
''')
conn.execute('''
CREATE TABLE IF NOT EXISTS failure_reports (
benchmark_name TEXT,
agent_name TEXT,
date TEXT,
run_id TEXT,
failure_report BLOB,
PRIMARY KEY (benchmark_name, agent_name, run_id)
)
''')
conn.execute('''
CREATE TABLE IF NOT EXISTS token_usage (
benchmark_name TEXT,
agent_name TEXT,
run_id TEXT,
model_name TEXT,
prompt_tokens INTEGER,
completion_tokens INTEGER,
input_tokens INTEGER,
output_tokens INTEGER,
total_tokens INTEGER,
input_tokens_cache_write INTEGER,
input_tokens_cache_read INTEGER,
PRIMARY KEY (benchmark_name, agent_name, run_id, model_name)
)
''')
def preprocess_traces(self, processed_dir="evals_live"):
processed_dir = Path(processed_dir)
for file in processed_dir.glob('*.json'):
with open(file, 'r') as f:
data = json.load(f)
agent_name = data['config']['agent_name']
benchmark_name = data['config']['benchmark_name']
if "inspect" in benchmark_name:
benchmark_name = benchmark_name.split("/")[-1]
date = data['config']['date']
config = data['config']
# Create tables for this benchmark if they don't exist
self.create_tables(benchmark_name)
try:
raw_logging_results = pickle.dumps(data['raw_logging_results'])
with self.get_conn(benchmark_name) as conn:
conn.execute('''
INSERT OR REPLACE INTO preprocessed_traces
(benchmark_name, agent_name, date, run_id, raw_logging_results)
VALUES (?, ?, ?, ?, ?)
''', (benchmark_name, agent_name, date, config['run_id'], raw_logging_results))
except Exception as e:
print(f"Error preprocessing raw_logging_results in {file}: {e}")
try:
failure_report = pickle.dumps(data['failure_report'])
with self.get_conn(benchmark_name) as conn:
conn.execute('''
INSERT INTO failure_reports
(benchmark_name, agent_name, date, run_id, failure_report)
VALUES (?, ?, ?, ?, ?)
''', (benchmark_name, agent_name, date, config['run_id'], failure_report))
except Exception as e:
print(f"Error preprocessing failure_report in {file}: {e}")
try:
results = data['results']
with self.get_conn(benchmark_name) as conn:
# Dynamically create placeholders and values list
columns = [col for col in PARSED_RESULTS_COLUMNS.keys()
if col not in ['benchmark_name', 'agent_name', 'date', 'run_id']]
placeholders = ','.join(['?'] * (len(columns) + 4)) # +4 for benchmark_name, agent_name, date, run_id
values = [
benchmark_name,
agent_name,
config['date'],
config['run_id']
] + [str(results.get(col)) if col in ['successful_tasks', 'failed_tasks']
else results.get(col) for col in columns]
query = f'''
INSERT INTO parsed_results
({', '.join(PARSED_RESULTS_COLUMNS.keys())})
VALUES ({placeholders})
'''
conn.execute(query, values)
except Exception as e:
print(f"Error preprocessing parsed results in {file}: {e}")
try:
total_usage = data.get('total_usage', {})
for model_name, usage in total_usage.items():
with self.get_conn(benchmark_name) as conn:
conn.execute('''
INSERT INTO token_usage
(benchmark_name, agent_name, run_id, model_name,
prompt_tokens, completion_tokens, input_tokens, output_tokens, total_tokens,
input_tokens_cache_write, input_tokens_cache_read)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
benchmark_name,
agent_name,
config['run_id'],
model_name,
usage.get('prompt_tokens', 0),
usage.get('completion_tokens', 0),
usage.get('input_tokens', 0),
usage.get('output_tokens', 0),
usage.get('total_tokens', 0),
usage.get('input_tokens_cache_write', 0),
usage.get('input_tokens_cache_read', 0)
))
except Exception as e:
print(f"Error preprocessing token usage in {file}: {e}")
@lru_cache(maxsize=100)
def get_analyzed_traces(self, agent_name, benchmark_name):
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT agent_name, raw_logging_results, date FROM preprocessed_traces
WHERE benchmark_name = ? AND agent_name = ?
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name, agent_name))
# check for each row if raw_logging_results is not None
df = df[df['raw_logging_results'].apply(lambda x: pickle.loads(x) is not None and x != 'None')]
if len(df) == 0:
return None
# select latest run
df = df.sort_values('date', ascending=False).groupby('agent_name').first().reset_index()
return pickle.loads(df['raw_logging_results'][0])
@lru_cache(maxsize=100)
def get_failure_report(self, agent_name, benchmark_name):
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT agent_name, date, failure_report FROM failure_reports
WHERE benchmark_name = ? AND agent_name = ?
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name, agent_name))
df = df[df['failure_report'].apply(lambda x: pickle.loads(x) is not None and x != 'None')]
if len(df) == 0:
return None
df = df.sort_values('date', ascending=False).groupby('agent_name').first().reset_index()
return pickle.loads(df['failure_report'][0])
def _calculate_ci(self, data, confidence=0.95, type='minmax'):
data = data[np.isfinite(data)]
if len(data) < 2:
return '', '', '' # No CI for less than 2 samples
n = len(data)
mean = np.mean(data)
if type == 't':
sem = stats.sem(data)
ci = stats.t.interval(confidence, n-1, loc=mean, scale=sem)
elif type == 'minmax':
min = np.min(data)
max = np.max(data)
ci = (min, max)
return mean, ci[0], ci[1]
def get_parsed_results(self, benchmark_name, aggregate=True):
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT * FROM parsed_results
WHERE benchmark_name = ?
ORDER BY accuracy DESC
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name,))
# Load metadata
with open('agents_metadata.yaml', 'r') as f:
metadata = yaml.safe_load(f)
# Create URL mapping
url_mapping = {}
if benchmark_name in metadata:
for agent in metadata[benchmark_name]:
if 'url' in agent and agent['url']: # Only add if URL exists and is not empty
url_mapping[agent['agent_name']] = agent['url']
# Add 'Verified' column
verified_agents = self.load_verified_agents()
df['Verified'] = df.apply(lambda row: '✓' if (benchmark_name, row['agent_name']) in verified_agents else '', axis=1)
# Add URLs to agent names if they exist
df['agent_name'] = df['agent_name'].apply(
lambda x: f'[{x}]({url_mapping[x]})' if x in url_mapping else x
)
# Add column for how many times an agent_name appears in the DataFrame
df['Runs'] = df.groupby('agent_name')['agent_name'].transform('count')
# Compute the 95% confidence interval for accuracy and cost for agents that have been run more than once
df['accuracy_ci'] = None
df['cost_ci'] = None
# Round float columns to 2 decimal places
float_columns = ['total_cost', 'accuracy', 'precision', 'recall', 'f1_score', 'auc',
'overall_score', 'vectorization_score', 'fathomnet_score', 'feedback_score',
'house_price_score', 'spaceship_titanic_score',
'amp_parkinsons_disease_progression_prediction_score', 'cifar10_score',
'imdb_score', 'level_1_accuracy', 'level_2_accuracy', 'level_3_accuracy']
for column in float_columns:
if column in df.columns:
df[column] = df[column].round(2)
for agent_name in df['agent_name'].unique():
agent_df = df[df['agent_name'] == agent_name]
if len(agent_df) > 1:
accuracy_mean, accuracy_lower, accuracy_upper = self._calculate_ci(agent_df['accuracy'], type='minmax')
cost_mean, cost_lower, cost_upper = self._calculate_ci(agent_df['total_cost'], type='minmax')
# Round CI values to 2 decimals
accuracy_ci = f"-{abs(accuracy_mean - accuracy_lower):.2f}/+{abs(accuracy_mean - accuracy_upper):.2f}"
cost_ci = f"-{abs(cost_mean - cost_lower):.2f}/+{abs(cost_mean - cost_upper):.2f}"
df.loc[df['agent_name'] == agent_name, 'accuracy_ci'] = accuracy_ci
df.loc[df['agent_name'] == agent_name, 'cost_ci'] = cost_ci
# Before dropping run_id, create new column from it with download link
df['Traces'] = df['run_id'].apply(
lambda x: f'[load](https://huggingface.co/datasets/agent-evals/agent_traces/resolve/main/{x}.zip?download=true)'
if x else ''
)
df = df.drop(columns=['successful_tasks', 'failed_tasks'], axis=1)
if aggregate:
df = df.groupby('agent_name').agg(AGGREGATION_RULES).reset_index()
# Rename columns using the display names mapping
df = df.rename(columns=COLUMN_DISPLAY_NAMES)
# Sort by Accuracy in descending order
df = df.sort_values('Accuracy', ascending=False)
return df
def get_task_success_data(self, benchmark_name):
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT agent_name, accuracy, successful_tasks, failed_tasks
FROM parsed_results
WHERE benchmark_name = ?
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name,))
# for agent_names that have been run more than once, take the run with the highest accuracy
df = df.sort_values('accuracy', ascending=False).groupby('agent_name').first().reset_index()
# Get all unique task IDs
task_ids = set()
for tasks in df['successful_tasks']:
if ast.literal_eval(tasks) is not None:
task_ids.update(ast.literal_eval(tasks))
for tasks in df['failed_tasks']:
if ast.literal_eval(tasks) is not None:
task_ids.update(ast.literal_eval(tasks))
# Create a DataFrame with agent_name, task_ids, and success columns
data_list = []
for _, row in df.iterrows():
agent_name = row['agent_name']
for task_id in task_ids:
success = 1 if task_id in row['successful_tasks'] else 0
data_list.append({
'agent_name': agent_name,
'task_id': task_id,
'success': success
})
df = pd.DataFrame(data_list)
df = df.rename(columns={
'agent_name': 'Agent Name',
'task_id': 'Task ID',
'success': 'Success'
})
return df
def load_verified_agents(self, file_path='agents_metadata.yaml'):
with open(file_path, 'r') as f:
metadata = yaml.safe_load(f)
verified_agents = set()
for benchmark, agents in metadata.items():
for agent in agents:
if 'verification_date' in agent: # Only add if verified
verified_agents.add((benchmark, agent['agent_name']))
return verified_agents
def get_token_usage_with_costs(self, benchmark_name, pricing_config=None):
"""Get token usage data with configurable pricing"""
if pricing_config is None:
pricing_config = DEFAULT_PRICING
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT agent_name, model_name,
SUM(prompt_tokens) as prompt_tokens,
SUM(completion_tokens) as completion_tokens,
SUM(input_tokens) as input_tokens,
SUM(output_tokens) as output_tokens,
SUM(total_tokens) as total_tokens,
SUM(input_tokens_cache_write) as input_tokens_cache_write,
SUM(input_tokens_cache_read) as input_tokens_cache_read
FROM token_usage
WHERE benchmark_name = ?
GROUP BY agent_name, model_name
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name,))
# Calculate costs based on pricing config (prices are per 1M tokens)
df['total_cost'] = 0.0
for model, prices in pricing_config.items():
mask = df['model_name'] == model
df.loc[mask, 'total_cost'] = (
df.loc[mask, 'input_tokens'] * prices['prompt_tokens'] / 1e6 +
df.loc[mask, 'output_tokens'] * prices['completion_tokens'] / 1e6 +
df.loc[mask, 'input_tokens_cache_read'] * prices['prompt_tokens'] / 1e6 +
df.loc[mask, 'input_tokens_cache_write'] * prices['prompt_tokens'] / 1e6 +
df.loc[mask, 'prompt_tokens'] * prices['prompt_tokens'] / 1e6 +
df.loc[mask, 'completion_tokens'] * prices['completion_tokens'] / 1e6
)
return df
def get_parsed_results_with_costs(self, benchmark_name, pricing_config=None, aggregate=True):
"""Get parsed results with recalculated costs based on token usage"""
# Get base results
results_df = self.get_parsed_results(benchmark_name, aggregate=False)
# Get token usage with new costs
token_costs = self.get_token_usage_with_costs(benchmark_name, pricing_config)
# Group token costs by agent
agent_costs = token_costs.groupby('agent_name')['total_cost'].sum().reset_index()
agent_costs = agent_costs.rename(columns={
'agent_name': 'agent_name_temp',
'total_cost': 'Total Cost'
})
# Drop existing Total Cost column if it exists
if 'Total Cost' in results_df.columns:
results_df = results_df.drop('Total Cost', axis=1)
# create temp column that is whatever is in agent_name [x] because of url we added to agent_name
results_df['agent_name_temp'] = results_df['Agent Name'].apply(lambda x: x.split('[')[1].split(']')[0] if '[' in x else x)
# Update costs in results
results_df = results_df.merge(agent_costs, on='agent_name_temp', how='left')
# Drop temp column
results_df = results_df.drop('agent_name_temp', axis=1)
if aggregate:
# Aggregate results
results_df = results_df.groupby('Agent Name').agg({
'Date': 'first',
'Total Cost': 'mean',
'Accuracy': 'mean',
'Precision': 'mean',
'Recall': 'mean',
'F1 Score': 'mean',
'AUC': 'mean',
'Overall Score': 'mean',
'Vectorization Score': 'mean',
'Fathomnet Score': 'mean',
'Feedback Score': 'mean',
'House Price Score': 'mean',
'Spaceship Titanic Score': 'mean',
'AMP Parkinsons Disease Progression Prediction Score': 'mean',
'CIFAR10 Score': 'mean',
'IMDB Score': 'mean',
'Level 1 Accuracy': 'mean',
'Level 2 Accuracy': 'mean',
'Level 3 Accuracy': 'mean',
'Verified': 'first',
'Traces': 'first',
'Runs': 'first',
'Accuracy CI': 'first',
'Total Cost CI': 'first'
}).reset_index()
# Round the cost values
results_df['Total Cost'] = results_df['Total Cost'].round(3)
# Sort by Accuracy in descending order
results_df = results_df.sort_values('Accuracy', ascending=False)
return results_df
def check_token_usage_data(self, benchmark_name):
"""Debug helper to check token usage data"""
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT * FROM token_usage
WHERE benchmark_name = ?
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name,))
return df
def get_models_for_benchmark(self, benchmark_name):
"""Get list of unique model names used in a benchmark"""
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT DISTINCT model_name
FROM token_usage
WHERE benchmark_name = ?
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name,))
return df['model_name'].tolist()
def get_all_agents(self, benchmark_name):
"""Get list of all agent names for a benchmark"""
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT DISTINCT agent_name
FROM parsed_results
WHERE benchmark_name = ?
'''
df = pd.read_sql_query(query, conn, params=(benchmark_name,))
return df['agent_name'].tolist()
def get_total_benchmarks(self):
"""Get the total number of unique benchmarks in the database"""
benchmarks = set()
for db_file in self.db_dir.glob('*.db'):
benchmarks.add(db_file.stem.replace('_', '/'))
return len(benchmarks) -1 # TODO hardcoded -1 for mlagentbench
def get_total_agents(self):
"""Get the total number of unique agents across all benchmarks"""
total_agents = set()
# Use the parsed_results table since it's guaranteed to have all benchmark-agent pairs
for db_file in self.db_dir.glob('*.db'):
# skip mlagentbench
if db_file.stem == 'mlagentbench':
continue # TODO remove hardcoded skip for mlagentbench
benchmark_name = db_file.stem.replace('_', '/')
with self.get_conn(benchmark_name) as conn:
query = '''
SELECT DISTINCT benchmark_name, agent_name
FROM parsed_results
'''
results = conn.execute(query).fetchall()
# Add each benchmark-agent pair to the set
total_agents.update(results)
return len(total_agents)
if __name__ == '__main__':
preprocessor = TracePreprocessor()
preprocessor.preprocess_traces() |