File size: 28,408 Bytes
7c691e6
 
 
 
 
 
 
 
 
 
 
 
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c03c7bc
56a86ce
 
c03c7bc
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c691e6
56a86ce
 
 
7c691e6
56a86ce
7c691e6
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
7c691e6
56a86ce
 
 
 
 
 
 
 
 
 
 
 
7c691e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a86ce
7c691e6
 
 
56a86ce
 
 
 
 
 
 
 
 
7c691e6
 
 
 
 
 
 
 
 
 
201da5d
 
7c691e6
 
 
56a86ce
 
 
7c691e6
 
56a86ce
7c691e6
 
 
 
 
 
 
 
 
 
56a86ce
7c691e6
 
 
56a86ce
7c691e6
 
 
 
 
 
56a86ce
 
 
 
 
 
 
7c691e6
 
 
56a86ce
 
 
 
 
 
 
 
 
 
7c691e6
 
 
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c691e6
 
56a86ce
7c691e6
 
 
 
 
 
56a86ce
7c691e6
 
 
 
 
 
 
 
 
 
 
 
56a86ce
7c691e6
 
 
 
 
 
 
 
 
 
 
 
 
 
56a86ce
7c691e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a86ce
7c691e6
 
 
 
 
 
 
56a86ce
 
 
 
 
 
 
 
 
 
7c691e6
 
56a86ce
7c691e6
 
56a86ce
 
 
 
7c691e6
 
 
 
 
56a86ce
7c691e6
 
56a86ce
 
 
 
 
 
 
 
 
 
 
7c691e6
 
 
 
 
 
 
56a86ce
 
 
7c691e6
56a86ce
7c691e6
 
c03c7bc
 
 
 
 
 
 
7c691e6
 
56a86ce
7c691e6
56a86ce
 
 
 
 
7c691e6
 
 
 
56a86ce
7c691e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a86ce
7c691e6
56a86ce
7c691e6
 
56a86ce
7c691e6
56a86ce
 
7c691e6
 
 
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ca771d
56a86ce
 
 
 
 
 
c03c7bc
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c03c7bc
56a86ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1baa168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c691e6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import json
from pathlib import Path
import sqlite3
import pickle
from functools import lru_cache
import threading
import pandas as pd
import ast
from scipy import stats
import yaml
import numpy as np

# Define column schemas
PARSED_RESULTS_COLUMNS = {
    'benchmark_name': 'TEXT',
    'agent_name': 'TEXT', 
    'date': 'TEXT',
    'run_id': 'TEXT',
    'successful_tasks': 'TEXT',
    'failed_tasks': 'TEXT',
    'total_cost': 'REAL',
    'accuracy': 'REAL',
    'precision': 'REAL',
    'recall': 'REAL',
    'f1_score': 'REAL',
    'auc': 'REAL',
    'overall_score': 'REAL',
    'vectorization_score': 'REAL',
    'fathomnet_score': 'REAL',
    'feedback_score': 'REAL',
    'house_price_score': 'REAL',
    'spaceship_titanic_score': 'REAL',
    'amp_parkinsons_disease_progression_prediction_score': 'REAL',
    'cifar10_score': 'REAL',
    'imdb_score': 'REAL',
    'level_1_accuracy': 'REAL',
    'level_2_accuracy': 'REAL',
    'level_3_accuracy': 'REAL',
    'task_goal_completion': 'REAL',  # New column
    'scenario_goal_completion': 'REAL',  # New column
    'accuracy_ci': 'TEXT',  # Using TEXT since it stores formatted strings like "-0.123/+0.456"
    'cost_ci': 'TEXT',
}

# Define which columns should be included in aggregation and how
AGGREGATION_RULES = {
    'date': 'first',
    'total_cost': 'mean',
    'accuracy': 'mean',
    'precision': 'mean',
    'recall': 'mean',
    'f1_score': 'mean',
    'auc': 'mean',
    'overall_score': 'mean',
    'vectorization_score': 'mean',
    'fathomnet_score': 'mean',
    'feedback_score': 'mean',
    'house_price_score': 'mean',
    'spaceship_titanic_score': 'mean',
    'amp_parkinsons_disease_progression_prediction_score': 'mean',
    'cifar10_score': 'mean',
    'imdb_score': 'mean',
    'level_1_accuracy': 'mean',
    'level_2_accuracy': 'mean',
    'level_3_accuracy': 'mean',
    'task_goal_completion': 'mean',
    'scenario_goal_completion': 'mean',
    'Verified': 'first',
    'Runs': 'first',
    'Traces': 'first',
    'accuracy_ci': 'first',
    'cost_ci': 'first',
    
}

# Define column display names
COLUMN_DISPLAY_NAMES = {
    'agent_name': 'Agent Name',
    'date': 'Date',
    'total_cost': 'Total Cost',
    'accuracy': 'Accuracy',
    'precision': 'Precision',
    'recall': 'Recall',
    'f1_score': 'F1 Score',
    'auc': 'AUC',
    'overall_score': 'Overall Score',
    'vectorization_score': 'Vectorization Score',
    'fathomnet_score': 'Fathomnet Score',
    'feedback_score': 'Feedback Score',
    'house_price_score': 'House Price Score',
    'spaceship_titanic_score': 'Spaceship Titanic Score',
    'amp_parkinsons_disease_progression_prediction_score': 'AMP Parkinsons Disease Progression Prediction Score',
    'cifar10_score': 'CIFAR10 Score',
    'imdb_score': 'IMDB Score',
    'level_1_accuracy': 'Level 1 Accuracy',
    'level_2_accuracy': 'Level 2 Accuracy',
    'level_3_accuracy': 'Level 3 Accuracy',
    'task_goal_completion': 'Task Goal Completion',
    'scenario_goal_completion': 'Scenario Goal Completion',
    'accuracy_ci': 'Accuracy CI',
    'cost_ci': 'Total Cost CI',
}

DEFAULT_PRICING = {
    "text-embedding-3-small": {"prompt_tokens": 0.02, "completion_tokens": 0},
                "text-embedding-3-large": {"prompt_tokens": 0.13, "completion_tokens": 0},
                "gpt-4o-2024-05-13": {"prompt_tokens": 2.5, "completion_tokens": 10},
                "gpt-4o-2024-08-06": {"prompt_tokens": 2.5, "completion_tokens": 10},
                "gpt-3.5-turbo-0125": {"prompt_tokens": 0.5, "completion_tokens": 1.5},
                "gpt-3.5-turbo": {"prompt_tokens": 0.5, "completion_tokens": 1.5},
                "gpt-4-turbo-2024-04-09": {"prompt_tokens": 10, "completion_tokens": 30},
                "gpt-4-turbo": {"prompt_tokens": 10, "completion_tokens": 30},
                "gpt-4o-mini-2024-07-18": {"prompt_tokens": 0.15, "completion_tokens": 0.6},
                "meta-llama/Meta-Llama-3.1-8B-Instruct": {"prompt_tokens": 0.18, "completion_tokens": 0.18},
                "meta-llama/Meta-Llama-3.1-70B-Instruct": {"prompt_tokens": 0.88, "completion_tokens": 0.88},
                "meta-llama/Meta-Llama-3.1-405B-Instruct": {"prompt_tokens": 5, "completion_tokens": 15},
                "gpt-4o": {"prompt_tokens": 2.5, "completion_tokens": 10},
                "o1-mini-2024-09-12": {"prompt_tokens": 3, "completion_tokens": 12},
                "o1-preview-2024-09-12": {"prompt_tokens": 15, "completion_tokens": 60},
                "claude-3-5-sonnet-20240620": {"prompt_tokens": 3, "completion_tokens": 15},
                "claude-3-5-sonnet-20241022": {"prompt_tokens": 3, "completion_tokens": 15},
                "us.anthropic.claude-3-5-sonnet-20240620-v1:0": {"prompt_tokens": 3, "completion_tokens": 15},
                "us.anthropic.claude-3-5-sonnet-20241022-v2:0": {"prompt_tokens": 3, "completion_tokens": 15},
                "openai/gpt-4o-2024-11-20": {"prompt_tokens": 2.5, "completion_tokens": 10},
                "openai/gpt-4o-2024-08-06": {"prompt_tokens": 2.5, "completion_tokens": 10},
                "openai/gpt-4o-mini-2024-07-18": {"prompt_tokens": 0.15, "completion_tokens": 0.6},
                "openai/o1-mini-2024-09-12": {"prompt_tokens": 3, "completion_tokens": 12},
                "openai/o1-preview-2024-09-12": {"prompt_tokens": 15, "completion_tokens": 60},
                "anthropic/claude-3-5-sonnet-20240620": {"prompt_tokens": 3, "completion_tokens": 15},
                "anthropic/claude-3-5-sonnet-20241022": {"prompt_tokens": 3, "completion_tokens": 15},
                "google/gemini-1.5-pro": {"prompt_tokens": 1.25, "completion_tokens": 5},
                "google/gemini-1.5-flash": {"prompt_tokens": 0.075, "completion_tokens": 0.3},
                "together/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": {"prompt_tokens": 3.5, "completion_tokens": 3.5},
                "together/meta-llama/Meta-Llama-3.1-70B-Instruct": {"prompt_tokens": 0.88, "completion_tokens": 0.88},
}

class TracePreprocessor:
    def __init__(self, db_dir='preprocessed_traces'):
        self.db_dir = Path(db_dir)
        self.db_dir.mkdir(exist_ok=True)
        self.local = threading.local()
        self.connections = {}

    def get_conn(self, benchmark_name):
        # Sanitize benchmark name for filename
        safe_name = benchmark_name.replace('/', '_').replace('\\', '_')
        db_path = self.db_dir / f"{safe_name}.db"
        
        # Get thread-specific connections dictionary
        if not hasattr(self.local, 'connections'):
            self.local.connections = {}
            
        # Create new connection if not exists for this benchmark
        if safe_name not in self.local.connections:
            self.local.connections[safe_name] = sqlite3.connect(db_path)
            
        return self.local.connections[safe_name]

    def create_tables(self, benchmark_name):
        with self.get_conn(benchmark_name) as conn:
            # Create parsed_results table dynamically from schema
            columns = [f"{col} {dtype}" for col, dtype in PARSED_RESULTS_COLUMNS.items()]
            create_parsed_results = f'''
                CREATE TABLE IF NOT EXISTS parsed_results (
                    {', '.join(columns)},
                    PRIMARY KEY (benchmark_name, agent_name, run_id)
                )
            '''
            conn.execute(create_parsed_results)
            
            conn.execute('''
                CREATE TABLE IF NOT EXISTS preprocessed_traces (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    date TEXT,
                    run_id TEXT,
                    raw_logging_results BLOB,
                    PRIMARY KEY (benchmark_name, agent_name, run_id)
                )
            ''')
            conn.execute('''
                CREATE TABLE IF NOT EXISTS failure_reports (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    date TEXT,
                    run_id TEXT,
                    failure_report BLOB,
                    PRIMARY KEY (benchmark_name, agent_name, run_id)
                )
            ''')
            conn.execute('''
                CREATE TABLE IF NOT EXISTS token_usage (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    run_id TEXT,
                    model_name TEXT,
                    prompt_tokens INTEGER,
                    completion_tokens INTEGER,
                    input_tokens INTEGER,
                    output_tokens INTEGER,
                    total_tokens INTEGER,
                    input_tokens_cache_write INTEGER,
                    input_tokens_cache_read INTEGER,
                    PRIMARY KEY (benchmark_name, agent_name, run_id, model_name)
                )
            ''')

    def preprocess_traces(self, processed_dir="evals_live"):
        processed_dir = Path(processed_dir)
        for file in processed_dir.glob('*.json'):
            with open(file, 'r') as f:
                data = json.load(f)
                agent_name = data['config']['agent_name']
                benchmark_name = data['config']['benchmark_name']
                if "inspect" in benchmark_name:
                    benchmark_name = benchmark_name.split("/")[-1]
                date = data['config']['date']
                config = data['config']

            # Create tables for this benchmark if they don't exist
            self.create_tables(benchmark_name)

            try:
                raw_logging_results = pickle.dumps(data['raw_logging_results'])
                with self.get_conn(benchmark_name) as conn:
                    conn.execute('''
                        INSERT OR REPLACE INTO preprocessed_traces 
                        (benchmark_name, agent_name, date, run_id, raw_logging_results) 
                        VALUES (?, ?, ?, ?, ?)
                    ''', (benchmark_name, agent_name, date, config['run_id'], raw_logging_results))
            except Exception as e:
                print(f"Error preprocessing raw_logging_results in {file}: {e}")

            try:
                failure_report = pickle.dumps(data['failure_report'])
                with self.get_conn(benchmark_name) as conn:
                    conn.execute('''
                        INSERT INTO failure_reports 
                        (benchmark_name, agent_name, date, run_id, failure_report)
                        VALUES (?, ?, ?, ?, ?)
                    ''', (benchmark_name, agent_name, date, config['run_id'], failure_report))
            except Exception as e:
                print(f"Error preprocessing failure_report in {file}: {e}")

            try:
                results = data['results']
                with self.get_conn(benchmark_name) as conn:
                    # Dynamically create placeholders and values list
                    columns = [col for col in PARSED_RESULTS_COLUMNS.keys() 
                              if col not in ['benchmark_name', 'agent_name', 'date', 'run_id']]
                    placeholders = ','.join(['?'] * (len(columns) + 4))  # +4 for benchmark_name, agent_name, date, run_id
                    
                    values = [
                        benchmark_name,
                        agent_name,
                        config['date'],
                        config['run_id']
                    ] + [str(results.get(col)) if col in ['successful_tasks', 'failed_tasks'] 
                         else results.get(col) for col in columns]

                    query = f'''
                        INSERT INTO parsed_results 
                        ({', '.join(PARSED_RESULTS_COLUMNS.keys())})
                        VALUES ({placeholders})
                    '''
                    conn.execute(query, values)
            except Exception as e:
                print(f"Error preprocessing parsed results in {file}: {e}")

            try:
                total_usage = data.get('total_usage', {})
                for model_name, usage in total_usage.items():
                    with self.get_conn(benchmark_name) as conn:
                        conn.execute('''
                            INSERT INTO token_usage 
                            (benchmark_name, agent_name, run_id, model_name, 
                            prompt_tokens, completion_tokens, input_tokens, output_tokens, total_tokens,
                            input_tokens_cache_write, input_tokens_cache_read)
                            VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                        ''', (
                            benchmark_name,
                            agent_name,
                            config['run_id'],
                            model_name,
                            usage.get('prompt_tokens', 0),
                            usage.get('completion_tokens', 0),
                            usage.get('input_tokens', 0),
                            usage.get('output_tokens', 0),
                            usage.get('total_tokens', 0),
                            usage.get('input_tokens_cache_write', 0),
                            usage.get('input_tokens_cache_read', 0)
                        ))
            except Exception as e:
                print(f"Error preprocessing token usage in {file}: {e}")

    @lru_cache(maxsize=100)
    def get_analyzed_traces(self, agent_name, benchmark_name):
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT agent_name, raw_logging_results, date FROM preprocessed_traces 
                WHERE benchmark_name = ? AND agent_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name, agent_name))

        # check for each row if raw_logging_results is not None
        df = df[df['raw_logging_results'].apply(lambda x: pickle.loads(x) is not None and x != 'None')]

        if len(df) == 0:
            return None

        # select latest run
        df = df.sort_values('date', ascending=False).groupby('agent_name').first().reset_index()

        return pickle.loads(df['raw_logging_results'][0])

    @lru_cache(maxsize=100)
    def get_failure_report(self, agent_name, benchmark_name):
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT agent_name, date, failure_report FROM failure_reports 
                WHERE benchmark_name = ? AND agent_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name, agent_name))

        df = df[df['failure_report'].apply(lambda x: pickle.loads(x) is not None and x != 'None')]

        if len(df) == 0:
            return None

        df = df.sort_values('date', ascending=False).groupby('agent_name').first().reset_index()

        return pickle.loads(df['failure_report'][0])

    def _calculate_ci(self, data, confidence=0.95, type='minmax'):
        data = data[np.isfinite(data)]

        if len(data) < 2:
            return '', '', '' # No CI for less than 2 samples
        n = len(data)

        mean = np.mean(data)

        if type == 't':
            sem = stats.sem(data)
            ci = stats.t.interval(confidence, n-1, loc=mean, scale=sem)

        elif type == 'minmax':
            min = np.min(data)
            max = np.max(data)
            ci = (min, max)
        return mean, ci[0], ci[1]
    
    def get_parsed_results(self, benchmark_name, aggregate=True):
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT * FROM parsed_results 
                WHERE benchmark_name = ?
                ORDER BY accuracy DESC
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))

        # Load metadata
        with open('agents_metadata.yaml', 'r') as f:
            metadata = yaml.safe_load(f)
        
        # Create URL mapping
        url_mapping = {}
        if benchmark_name in metadata:
            for agent in metadata[benchmark_name]:
                if 'url' in agent and agent['url']:  # Only add if URL exists and is not empty
                    url_mapping[agent['agent_name']] = agent['url']

        # Add 'Verified' column
        verified_agents = self.load_verified_agents()
        df['Verified'] = df.apply(lambda row: '✓' if (benchmark_name, row['agent_name']) in verified_agents else '', axis=1)

        # Add URLs to agent names if they exist
        df['agent_name'] = df['agent_name'].apply(
            lambda x: f'[{x}]({url_mapping[x]})' if x in url_mapping else x
        )
        
        # Add column for how many times an agent_name appears in the DataFrame
        df['Runs'] = df.groupby('agent_name')['agent_name'].transform('count')

        # Compute the 95% confidence interval for accuracy and cost for agents that have been run more than once
        df['accuracy_ci'] = None
        df['cost_ci'] = None

        # Round float columns to 2 decimal places
        float_columns = ['total_cost', 'accuracy', 'precision', 'recall', 'f1_score', 'auc', 
                        'overall_score', 'vectorization_score', 'fathomnet_score', 'feedback_score', 
                        'house_price_score', 'spaceship_titanic_score', 
                        'amp_parkinsons_disease_progression_prediction_score', 'cifar10_score', 
                        'imdb_score', 'level_1_accuracy', 'level_2_accuracy', 'level_3_accuracy']
        
        for column in float_columns:
            if column in df.columns:
                df[column] = df[column].round(2)

        for agent_name in df['agent_name'].unique():
            agent_df = df[df['agent_name'] == agent_name]
            
            if len(agent_df) > 1:
                accuracy_mean, accuracy_lower, accuracy_upper = self._calculate_ci(agent_df['accuracy'], type='minmax')
                cost_mean, cost_lower, cost_upper = self._calculate_ci(agent_df['total_cost'], type='minmax')
                
                # Round CI values to 2 decimals
                accuracy_ci = f"-{abs(accuracy_mean - accuracy_lower):.2f}/+{abs(accuracy_mean - accuracy_upper):.2f}"
                cost_ci = f"-{abs(cost_mean - cost_lower):.2f}/+{abs(cost_mean - cost_upper):.2f}"
                
                df.loc[df['agent_name'] == agent_name, 'accuracy_ci'] = accuracy_ci
                df.loc[df['agent_name'] == agent_name, 'cost_ci'] = cost_ci

        # Before dropping run_id, create new column from it with download link
        df['Traces'] = df['run_id'].apply(
            lambda x: f'[load](https://huggingface.co/datasets/agent-evals/agent_traces/resolve/main/{x}.zip?download=true)'
            if x else ''
        )
        
        df = df.drop(columns=['successful_tasks', 'failed_tasks'], axis=1)

        if aggregate:
            df = df.groupby('agent_name').agg(AGGREGATION_RULES).reset_index()

        # Rename columns using the display names mapping
        df = df.rename(columns=COLUMN_DISPLAY_NAMES)
        
        # Sort by Accuracy in descending order
        df = df.sort_values('Accuracy', ascending=False)

        return df
    
    def get_task_success_data(self, benchmark_name):
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT agent_name, accuracy, successful_tasks, failed_tasks
                FROM parsed_results 
                WHERE benchmark_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))

        # for agent_names that have been run more than once, take the run with the highest accuracy
        df = df.sort_values('accuracy', ascending=False).groupby('agent_name').first().reset_index()
        
        # Get all unique task IDs
        task_ids = set()
        for tasks in df['successful_tasks']:
            if ast.literal_eval(tasks) is not None:
                task_ids.update(ast.literal_eval(tasks))
        for tasks in df['failed_tasks']:
            if ast.literal_eval(tasks) is not None:
                task_ids.update(ast.literal_eval(tasks))

        # Create a DataFrame with agent_name, task_ids, and success columns
        data_list = []
        for _, row in df.iterrows():
            agent_name = row['agent_name']
            for task_id in task_ids:
                success = 1 if task_id in row['successful_tasks'] else 0
                data_list.append({
                    'agent_name': agent_name,
                    'task_id': task_id,
                    'success': success
                })
        df = pd.DataFrame(data_list)

        df = df.rename(columns={
            'agent_name': 'Agent Name',
            'task_id': 'Task ID',
            'success': 'Success'
        })

        return df
    
    def load_verified_agents(self, file_path='agents_metadata.yaml'):
        with open(file_path, 'r') as f:
            metadata = yaml.safe_load(f)
        
        verified_agents = set()
        for benchmark, agents in metadata.items():
            for agent in agents:
                if 'verification_date' in agent:  # Only add if verified
                    verified_agents.add((benchmark, agent['agent_name']))
        
        return verified_agents

    def get_token_usage_with_costs(self, benchmark_name, pricing_config=None):
        """Get token usage data with configurable pricing"""
        if pricing_config is None:
            pricing_config = DEFAULT_PRICING

        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT agent_name, model_name,
                SUM(prompt_tokens) as prompt_tokens,
                SUM(completion_tokens) as completion_tokens,
                SUM(input_tokens) as input_tokens,
                SUM(output_tokens) as output_tokens,
                SUM(total_tokens) as total_tokens,
                SUM(input_tokens_cache_write) as input_tokens_cache_write,
                SUM(input_tokens_cache_read) as input_tokens_cache_read
                FROM token_usage
                WHERE benchmark_name = ?
                GROUP BY agent_name, model_name
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))
                    
        # Calculate costs based on pricing config (prices are per 1M tokens)
        df['total_cost'] = 0.0
        for model, prices in pricing_config.items():
            mask = df['model_name'] == model
            df.loc[mask, 'total_cost'] = (
                df.loc[mask, 'input_tokens'] * prices['prompt_tokens'] / 1e6 +
                df.loc[mask, 'output_tokens'] * prices['completion_tokens'] / 1e6 +
                df.loc[mask, 'input_tokens_cache_read'] * prices['prompt_tokens'] / 1e6 +
                df.loc[mask, 'input_tokens_cache_write'] * prices['prompt_tokens'] / 1e6 +
                df.loc[mask, 'prompt_tokens'] * prices['prompt_tokens'] / 1e6 +
                df.loc[mask, 'completion_tokens'] * prices['completion_tokens'] / 1e6
            )
                    
        return df

    def get_parsed_results_with_costs(self, benchmark_name, pricing_config=None, aggregate=True):
        """Get parsed results with recalculated costs based on token usage"""
        # Get base results
        results_df = self.get_parsed_results(benchmark_name, aggregate=False)
        
        # Get token usage with new costs
        token_costs = self.get_token_usage_with_costs(benchmark_name, pricing_config)
        
        # Group token costs by agent
        agent_costs = token_costs.groupby('agent_name')['total_cost'].sum().reset_index()

        agent_costs = agent_costs.rename(columns={
            'agent_name': 'agent_name_temp',
            'total_cost': 'Total Cost'
        })
                
        # Drop existing Total Cost column if it exists
        if 'Total Cost' in results_df.columns:
            results_df = results_df.drop('Total Cost', axis=1)
            
        # create temp column that is whatever is in agent_name [x] because of url we added to agent_name
        results_df['agent_name_temp'] = results_df['Agent Name'].apply(lambda x: x.split('[')[1].split(']')[0] if '[' in x else x)
        
        # Update costs in results
        results_df = results_df.merge(agent_costs, on='agent_name_temp', how='left')
        
        # Drop temp column
        results_df = results_df.drop('agent_name_temp', axis=1)
                    
        if aggregate:
            # Aggregate results
            results_df = results_df.groupby('Agent Name').agg({
                'Date': 'first',
                'Total Cost': 'mean',
                'Accuracy': 'mean',
                'Precision': 'mean',
                'Recall': 'mean',
                'F1 Score': 'mean',
                'AUC': 'mean',
                'Overall Score': 'mean',
                'Vectorization Score': 'mean',
                'Fathomnet Score': 'mean',
                'Feedback Score': 'mean',
                'House Price Score': 'mean',
                'Spaceship Titanic Score': 'mean',
                'AMP Parkinsons Disease Progression Prediction Score': 'mean',
                'CIFAR10 Score': 'mean',
                'IMDB Score': 'mean',
                'Level 1 Accuracy': 'mean',
                'Level 2 Accuracy': 'mean',
                'Level 3 Accuracy': 'mean',
                'Verified': 'first',
                'Traces': 'first',
                'Runs': 'first',
                'Accuracy CI': 'first',
                'Total Cost CI': 'first'
            }).reset_index()
        
        # Round the cost values
        results_df['Total Cost'] = results_df['Total Cost'].round(3)
        
        # Sort by Accuracy in descending order
        results_df = results_df.sort_values('Accuracy', ascending=False)
        
        return results_df

    def check_token_usage_data(self, benchmark_name):
        """Debug helper to check token usage data"""
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT * FROM token_usage
                WHERE benchmark_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))
        return df

    def get_models_for_benchmark(self, benchmark_name):
        """Get list of unique model names used in a benchmark"""
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT DISTINCT model_name
                FROM token_usage
                WHERE benchmark_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))
        return df['model_name'].tolist()

    def get_all_agents(self, benchmark_name):
        """Get list of all agent names for a benchmark"""
        with self.get_conn(benchmark_name) as conn:
            query = '''
                SELECT DISTINCT agent_name
                FROM parsed_results
                WHERE benchmark_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))
        return df['agent_name'].tolist()

    def get_total_benchmarks(self):
        """Get the total number of unique benchmarks in the database"""
        benchmarks = set()
        for db_file in self.db_dir.glob('*.db'):
            benchmarks.add(db_file.stem.replace('_', '/'))
        return len(benchmarks) -1 # TODO hardcoded -1 for mlagentbench

    def get_total_agents(self):
        """Get the total number of unique agents across all benchmarks"""
        total_agents = set()
        # Use the parsed_results table since it's guaranteed to have all benchmark-agent pairs
        for db_file in self.db_dir.glob('*.db'):
            # skip mlagentbench
            if db_file.stem == 'mlagentbench':
                continue # TODO remove hardcoded skip for mlagentbench
            benchmark_name = db_file.stem.replace('_', '/')
            with self.get_conn(benchmark_name) as conn:
                query = '''
                    SELECT DISTINCT benchmark_name, agent_name 
                    FROM parsed_results
                '''
                results = conn.execute(query).fetchall()
                # Add each benchmark-agent pair to the set
                total_agents.update(results)
        return len(total_agents)

if __name__ == '__main__':
    preprocessor = TracePreprocessor()
    preprocessor.preprocess_traces()