Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import DonutProcessor, VisionEncoderDecoderModel | |
| import requests | |
| from PIL import Image | |
| import torch, os, re, json | |
| import spaces | |
| torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png') | |
| torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png') | |
| model_name = "ahmed-masry/unichart-base-960" | |
| model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
| processor = DonutProcessor.from_pretrained(model_name) | |
| def predict(image, input_prompt): | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| input_prompt += " <s_answer>" | |
| decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
| pixel_values = processor(image, return_tensors="pt").pixel_values | |
| outputs = model.generate( | |
| pixel_values.to(device), | |
| decoder_input_ids=decoder_input_ids.to(device), | |
| max_length=model.decoder.config.max_position_embeddings, | |
| early_stopping=True, | |
| pad_token_id=processor.tokenizer.pad_token_id, | |
| eos_token_id=processor.tokenizer.eos_token_id, | |
| use_cache=True, | |
| num_beams=4, | |
| bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
| return_dict_in_generate=True, | |
| ) | |
| sequence = processor.batch_decode(outputs.sequences)[0] | |
| sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
| sequence = re.sub(r"<.*?>", "", sequence, count=2).strip() | |
| return sequence | |
| instructions = f""" | |
| Demo of the [UniChart Base](https://huggingface.co/ahmed-masry/unichart-base-960) Model | |
| Learn more about the model by reading [our paper](https://arxiv.org/abs/2305.14761) and explore the [code](https://github.com/vis-nlp/UniChart) | |
| You can use UniChart for the following tasks: | |
| | Task | Input Prompt | | |
| | ------------- | ------------- | | |
| | Chart Summarization | \<summarize_chart\> | | |
| | Chart to Table | \<extract_data_table\> | | |
| | Open Chart Question Answering | \<opencqa\> question | | |
| """ | |
| image = gr.components.Image(type="pil", label="Chart Image") | |
| input_prompt = gr.components.Textbox(label="Input Prompt") | |
| model_output = gr.components.Textbox(label="Model Output") | |
| examples = [["chart_example_1.png", "<summarize_chart>"], | |
| ["chart_example_2.png", "<extract_data_table>"]] | |
| title = "Interactive Gradio Demo for UniChart-base-960 model" | |
| interface = gr.Interface(fn=predict, | |
| inputs=[image, input_prompt], | |
| outputs=model_output, | |
| examples=examples, | |
| title=title, | |
| description=instructions, | |
| theme='gradio/soft') | |
| interface.launch() |