Spaces:
Runtime error
Runtime error
| import tensorflow as tf | |
| from simple_unet_model import simple_unet_model | |
| from tensorflow.keras.utils import normalize | |
| import os | |
| from PIL import Image, ImageOps | |
| import numpy as np | |
| import gradio as gr | |
| #Loading Model | |
| def get_model(): | |
| return simple_unet_model(256, 256, 1) | |
| model = get_model() | |
| model.load_weights('mitochondria.hdf5') | |
| def predict(input_image): | |
| img = Image.fromarray(input_image) | |
| gray_img = ImageOps.grayscale(img) | |
| resized_img = gray_img.resize((256,256)) | |
| img = np.array(resized_img) | |
| img = np.expand_dims(img, axis = (0,3)) | |
| img = normalize(img, axis=1) | |
| mask = model.predict(img)[0,:,:,0] | |
| return mask | |
| def load_examples(): | |
| files = os.listdir() | |
| img_list = [] | |
| for file in files: | |
| if '.jpg' in file: | |
| img_list.append(file) | |
| return img_list | |
| examples = load_examples() | |
| demo = gr.Interface(fn=predict, | |
| inputs="image", | |
| outputs=gr.Image(shape=(256, 256)), | |
| title = "Mitochondria Detection", | |
| examples =examples ) | |
| demo.launch() |