Spaces:
Sleeping
Sleeping
Releasing ChatWithMyPDF
Browse files- .chainlit/config.toml +62 -0
- __pycache__/app.cpython-39.pyc +0 -0
- app.py +146 -0
- chainlit.md +14 -0
- requirements.txt +6 -0
.chainlit/config.toml
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
# Whether to enable telemetry (default: true). No personal data is collected.
|
| 3 |
+
enable_telemetry = true
|
| 4 |
+
|
| 5 |
+
# List of environment variables to be provided by each user to use the app.
|
| 6 |
+
user_env = []
|
| 7 |
+
|
| 8 |
+
# Duration (in seconds) during which the session is saved when the connection is lost
|
| 9 |
+
session_timeout = 3600
|
| 10 |
+
|
| 11 |
+
# Enable third parties caching (e.g LangChain cache)
|
| 12 |
+
cache = false
|
| 13 |
+
|
| 14 |
+
# Follow symlink for asset mount (see https://github.com/Chainlit/chainlit/issues/317)
|
| 15 |
+
# follow_symlink = false
|
| 16 |
+
|
| 17 |
+
[features]
|
| 18 |
+
# Show the prompt playground
|
| 19 |
+
prompt_playground = true
|
| 20 |
+
|
| 21 |
+
[UI]
|
| 22 |
+
# Name of the app and chatbot.
|
| 23 |
+
name = "Chatbot"
|
| 24 |
+
|
| 25 |
+
# Description of the app and chatbot. This is used for HTML tags.
|
| 26 |
+
# description = ""
|
| 27 |
+
|
| 28 |
+
# Large size content are by default collapsed for a cleaner ui
|
| 29 |
+
default_collapse_content = true
|
| 30 |
+
|
| 31 |
+
# The default value for the expand messages settings.
|
| 32 |
+
default_expand_messages = false
|
| 33 |
+
|
| 34 |
+
# Hide the chain of thought details from the user in the UI.
|
| 35 |
+
hide_cot = false
|
| 36 |
+
|
| 37 |
+
# Link to your github repo. This will add a github button in the UI's header.
|
| 38 |
+
# github = ""
|
| 39 |
+
|
| 40 |
+
# Override default MUI light theme. (Check theme.ts)
|
| 41 |
+
[UI.theme.light]
|
| 42 |
+
#background = "#FAFAFA"
|
| 43 |
+
#paper = "#FFFFFF"
|
| 44 |
+
|
| 45 |
+
[UI.theme.light.primary]
|
| 46 |
+
#main = "#F80061"
|
| 47 |
+
#dark = "#980039"
|
| 48 |
+
#light = "#FFE7EB"
|
| 49 |
+
|
| 50 |
+
# Override default MUI dark theme. (Check theme.ts)
|
| 51 |
+
[UI.theme.dark]
|
| 52 |
+
#background = "#FAFAFA"
|
| 53 |
+
#paper = "#FFFFFF"
|
| 54 |
+
|
| 55 |
+
[UI.theme.dark.primary]
|
| 56 |
+
#main = "#F80061"
|
| 57 |
+
#dark = "#980039"
|
| 58 |
+
#light = "#FFE7EB"
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
[meta]
|
| 62 |
+
generated_by = "0.7.0"
|
__pycache__/app.cpython-39.pyc
ADDED
|
Binary file (4.24 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain.vectorstores import Chroma
|
| 7 |
+
from langchain.chains import (
|
| 8 |
+
ConversationalRetrievalChain,
|
| 9 |
+
)
|
| 10 |
+
from langchain.document_loaders import PyPDFLoader
|
| 11 |
+
from langchain.chat_models import ChatOpenAI
|
| 12 |
+
from langchain.prompts.chat import (
|
| 13 |
+
ChatPromptTemplate,
|
| 14 |
+
SystemMessagePromptTemplate,
|
| 15 |
+
HumanMessagePromptTemplate,
|
| 16 |
+
)
|
| 17 |
+
from langchain.docstore.document import Document
|
| 18 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
| 19 |
+
from chainlit.types import AskFileResponse
|
| 20 |
+
|
| 21 |
+
import chainlit as cl
|
| 22 |
+
|
| 23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 24 |
+
|
| 25 |
+
system_template = """Use the following pieces of context to answer the users question.
|
| 26 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 27 |
+
ALWAYS return a "SOURCES" part in your answer.
|
| 28 |
+
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
| 29 |
+
|
| 30 |
+
And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well.
|
| 31 |
+
|
| 32 |
+
Example of your response should be:
|
| 33 |
+
|
| 34 |
+
The answer is foo
|
| 35 |
+
SOURCES: xyz
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
Begin!
|
| 39 |
+
----------------
|
| 40 |
+
{summaries}"""
|
| 41 |
+
messages = [
|
| 42 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
| 43 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
| 44 |
+
]
|
| 45 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
| 46 |
+
chain_type_kwargs = {"prompt": prompt}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def process_file(file: AskFileResponse):
|
| 50 |
+
import tempfile
|
| 51 |
+
|
| 52 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
|
| 53 |
+
with open(tempfile.name, "wb") as f:
|
| 54 |
+
f.write(file.content)
|
| 55 |
+
|
| 56 |
+
pypdf_loader = PyPDFLoader(tempfile.name)
|
| 57 |
+
texts = pypdf_loader.load_and_split()
|
| 58 |
+
texts = [text.page_content for text in texts]
|
| 59 |
+
return texts
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@cl.on_chat_start
|
| 63 |
+
async def on_chat_start():
|
| 64 |
+
files = None
|
| 65 |
+
|
| 66 |
+
# Wait for the user to upload a file
|
| 67 |
+
while files == None:
|
| 68 |
+
files = await cl.AskFileMessage(
|
| 69 |
+
content="Please upload a PDF file to begin!",
|
| 70 |
+
accept=["application/pdf"],
|
| 71 |
+
max_size_mb=20,
|
| 72 |
+
timeout=180,
|
| 73 |
+
).send()
|
| 74 |
+
|
| 75 |
+
file = files[0]
|
| 76 |
+
|
| 77 |
+
msg = cl.Message(
|
| 78 |
+
content=f"Processing `{file.name}`...", disable_human_feedback=True
|
| 79 |
+
)
|
| 80 |
+
await msg.send()
|
| 81 |
+
|
| 82 |
+
# load the file
|
| 83 |
+
texts = process_file(file)
|
| 84 |
+
|
| 85 |
+
print(texts[0])
|
| 86 |
+
|
| 87 |
+
# Create a metadata for each chunk
|
| 88 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
| 89 |
+
|
| 90 |
+
# Create a Chroma vector store
|
| 91 |
+
embeddings = OpenAIEmbeddings()
|
| 92 |
+
docsearch = await cl.make_async(Chroma.from_texts)(
|
| 93 |
+
texts, embeddings, metadatas=metadatas
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
message_history = ChatMessageHistory()
|
| 97 |
+
|
| 98 |
+
memory = ConversationBufferMemory(
|
| 99 |
+
memory_key="chat_history",
|
| 100 |
+
output_key="answer",
|
| 101 |
+
chat_memory=message_history,
|
| 102 |
+
return_messages=True,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Create a chain that uses the Chroma vector store
|
| 106 |
+
chain = ConversationalRetrievalChain.from_llm(
|
| 107 |
+
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
| 108 |
+
chain_type="stuff",
|
| 109 |
+
retriever=docsearch.as_retriever(),
|
| 110 |
+
memory=memory,
|
| 111 |
+
return_source_documents=True,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Let the user know that the system is ready
|
| 115 |
+
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
| 116 |
+
await msg.update()
|
| 117 |
+
|
| 118 |
+
cl.user_session.set("chain", chain)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@cl.on_message
|
| 122 |
+
async def main(message):
|
| 123 |
+
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
| 124 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
| 125 |
+
|
| 126 |
+
res = await chain.acall(message, callbacks=[cb])
|
| 127 |
+
answer = res["answer"]
|
| 128 |
+
source_documents = res["source_documents"] # type: List[Document]
|
| 129 |
+
|
| 130 |
+
text_elements = [] # type: List[cl.Text]
|
| 131 |
+
|
| 132 |
+
if source_documents:
|
| 133 |
+
for source_idx, source_doc in enumerate(source_documents):
|
| 134 |
+
source_name = f"source_{source_idx}"
|
| 135 |
+
# Create the text element referenced in the message
|
| 136 |
+
text_elements.append(
|
| 137 |
+
cl.Text(content=source_doc.page_content, name=source_name)
|
| 138 |
+
)
|
| 139 |
+
source_names = [text_el.name for text_el in text_elements]
|
| 140 |
+
|
| 141 |
+
if source_names:
|
| 142 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
| 143 |
+
else:
|
| 144 |
+
answer += "\nNo sources found"
|
| 145 |
+
|
| 146 |
+
await cl.Message(content=answer, elements=text_elements).send()
|
chainlit.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Welcome to Chainlit! ππ€
|
| 2 |
+
|
| 3 |
+
Hi there, Developer! π We're excited to have you on board. Chainlit is a powerful tool designed to help you prototype, debug and share applications built on top of LLMs.
|
| 4 |
+
|
| 5 |
+
## Useful Links π
|
| 6 |
+
|
| 7 |
+
- **Documentation:** Get started with our comprehensive [Chainlit Documentation](https://docs.chainlit.io) π
|
| 8 |
+
- **Discord Community:** Join our friendly [Chainlit Discord](https://discord.gg/ZThrUxbAYw) to ask questions, share your projects, and connect with other developers! π¬
|
| 9 |
+
|
| 10 |
+
We can't wait to see what you create with Chainlit! Happy coding! π»π
|
| 11 |
+
|
| 12 |
+
## Welcome screen
|
| 13 |
+
|
| 14 |
+
To modify the welcome screen, edit the `chainlit.md` file at the root of your project. If you do not want a welcome screen, just leave this file empty.
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
chromadb
|
| 3 |
+
tiktoken
|
| 4 |
+
pypdf
|
| 5 |
+
chainlit
|
| 6 |
+
openai
|