Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import base64
|
|
| 2 |
import io
|
| 3 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 4 |
import os
|
| 5 |
-
import shutil
|
| 6 |
from PIL import Image
|
| 7 |
from fastapi.responses import JSONResponse
|
| 8 |
from semantic_seg_model import segmentation_inference
|
|
@@ -29,7 +28,7 @@ temp_processing_dir = input_images_dir + "processed/"
|
|
| 29 |
|
| 30 |
# Define a function to handle the POST request at `image-analyzer`
|
| 31 |
@app.post("/image-analyzer")
|
| 32 |
-
def image_analyzer(image: UploadFile = File(...)):
|
| 33 |
"""
|
| 34 |
This function takes in an image filepath and will return the PolyHaven url addresses of the
|
| 35 |
top k materials similar to the wall, ceiling, and floor.
|
|
@@ -42,16 +41,25 @@ def image_analyzer(image: UploadFile = File(...)):
|
|
| 42 |
os.remove(file_path) # Remove the file
|
| 43 |
except Exception as e:
|
| 44 |
print(f"Failed to delete {file_path}. Reason: {e}")
|
| 45 |
-
|
| 46 |
# load image
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
print("image loaded successfully. Processing image for segmentation and similarity inference...", datetime.now())
|
|
|
|
| 52 |
# segment into components
|
| 53 |
-
segmentation_inference(
|
| 54 |
print("image segmented successfully. Starting similarity inference...", datetime.now())
|
|
|
|
| 55 |
# identify similar materials for each component
|
| 56 |
matching_textures = similarity_inference(temp_processing_dir)
|
| 57 |
print("done", datetime.now())
|
|
@@ -78,13 +86,17 @@ async def image_render(prompt: str, image: UploadFile = File(...)):
|
|
| 78 |
print(f"recieved prompt: {prompt} and image: {image}")
|
| 79 |
image_path = os.path.join(input_images_dir, image.filename+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+".png")
|
| 80 |
contents = await image.read()
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# Convert image to grayscale
|
| 87 |
-
grayscale_image =
|
| 88 |
# Save the processed image to the specified path
|
| 89 |
grayscale_image.save(image_path)
|
| 90 |
result = client.predict(
|
|
@@ -115,4 +127,4 @@ async def image_render(prompt: str, image: UploadFile = File(...)):
|
|
| 115 |
except Exception as e:
|
| 116 |
print(str(e))
|
| 117 |
raise HTTPException(status_code=500, detail=str(e))
|
| 118 |
-
|
|
|
|
| 2 |
import io
|
| 3 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 4 |
import os
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
from semantic_seg_model import segmentation_inference
|
|
|
|
| 28 |
|
| 29 |
# Define a function to handle the POST request at `image-analyzer`
|
| 30 |
@app.post("/image-analyzer")
|
| 31 |
+
async def image_analyzer(image: UploadFile = File(...)):
|
| 32 |
"""
|
| 33 |
This function takes in an image filepath and will return the PolyHaven url addresses of the
|
| 34 |
top k materials similar to the wall, ceiling, and floor.
|
|
|
|
| 41 |
os.remove(file_path) # Remove the file
|
| 42 |
except Exception as e:
|
| 43 |
print(f"Failed to delete {file_path}. Reason: {e}")
|
| 44 |
+
|
| 45 |
# load image
|
| 46 |
+
contents = await image.read()
|
| 47 |
+
if contents.startswith(b"data:image/png;base64"):
|
| 48 |
+
# Remove the prefix "data:image/png;base64,"
|
| 49 |
+
image_data = contents.split(b";base64,")[1]
|
| 50 |
+
# Decode base64 data
|
| 51 |
+
decoded_image = base64.b64decode(image_data)
|
| 52 |
+
img = Image.open(io.BytesIO(decoded_image))
|
| 53 |
+
|
| 54 |
+
else:
|
| 55 |
+
img = Image.open(image.file)
|
| 56 |
+
|
| 57 |
print("image loaded successfully. Processing image for segmentation and similarity inference...", datetime.now())
|
| 58 |
+
|
| 59 |
# segment into components
|
| 60 |
+
segmentation_inference(img, temp_processing_dir)
|
| 61 |
print("image segmented successfully. Starting similarity inference...", datetime.now())
|
| 62 |
+
|
| 63 |
# identify similar materials for each component
|
| 64 |
matching_textures = similarity_inference(temp_processing_dir)
|
| 65 |
print("done", datetime.now())
|
|
|
|
| 86 |
print(f"recieved prompt: {prompt} and image: {image}")
|
| 87 |
image_path = os.path.join(input_images_dir, image.filename+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+".png")
|
| 88 |
contents = await image.read()
|
| 89 |
+
if contents.startswith(b"data:image/png;base64"):
|
| 90 |
+
# Remove the prefix "data:image/png;base64,"
|
| 91 |
+
image_data = contents.split(b";base64,")[1]
|
| 92 |
+
# Decode base64 data
|
| 93 |
+
decoded_image = base64.b64decode(image_data)
|
| 94 |
+
img = Image.open(io.BytesIO(decoded_image))
|
| 95 |
+
|
| 96 |
+
else:
|
| 97 |
+
img = Image.open(image.file)
|
| 98 |
# Convert image to grayscale
|
| 99 |
+
grayscale_image = img.convert('L')
|
| 100 |
# Save the processed image to the specified path
|
| 101 |
grayscale_image.save(image_path)
|
| 102 |
result = client.predict(
|
|
|
|
| 127 |
except Exception as e:
|
| 128 |
print(str(e))
|
| 129 |
raise HTTPException(status_code=500, detail=str(e))
|
| 130 |
+
|